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ABSTRACT

This i1s a complete documentation of the fifth version of the
Computer Fire Code (Mark 5). Mark 5 is of course a substantial im-
provement over Mark 4, which in turn had expanded and generalized
Mark 3, etc. Although imposingly thick, this document has been
written in a form which may be easily read, as each section begins
with a brief outline of that section. The details are then given
in the following paragraphs, for the interested reader.

The Computer Fire Code permits the calculation of the evolution
of a fire in an enclosure with a number of vents, and containing a
number of objects (flammable or otherwise). The fire may be of
several kinds, and the calculation will proceed for whatever time
the user selects.

Suggestions for the improvement of the program itself or of this
document, will be gratefully received. The tape containing the pro-
gram itself is available at cost. The listing is also available on

request (Appendix D).

vii






I. INTRODUCTION

If we watch the development'of a fire in an enclosure, we see at first some
small ignition process on an individual fuel element. It might be a lighted
cigarette on an overstuffed chair, or the spark from a frayed cord under a rug.
Eventually, the smoking fuel begins to smolder and then breaks into flames.

The flames feed heat back to the fuel, which spreads the fire; it draws air in

to produce a hot rising plume; at the ceiling the plume spreads out as a hot gas
layer and thus heats the ceiling and by radiation further increases the fire and
heats other fuels. Assuming there is enough initial fuel, the hot layer soon
deepens and reaches the top of an open door or window and hot gas begins to flow
out. Soon, other fuel items in the room are heated to their ignition temperature
and the fire spreads rapidly to flashover.

Shortly after the fire starts, value destruction by the deposition on delicate
finishes also begins. As soon as the fire starts, the expansion of the air begins
to move air throughout the building. Once hot gas begins to flow through a door
into another room, the value destruction process is also extended. Furthermore,
the toxic gases begin to permeate the building, endangering the lives of the oc-
cupants,

Every one of the processes identified above is capable of being individually
understood in quantitative detail, either from our present knowledge of physics
and chemistry, or (at least) based upon empirical measurements. However, they
are all coupled, some of them in quite complex ways. Indeed, the development
of a fire even in a simple enclosure--not to speak of one in a large building--
involves so many complex interacting phenomena that the calculation of the process
before the advent of large-scale high-speed computing machines would have been
impossible. Moreover, much of the physics and chemistry Has been unknown. Of

course, our ignorance and the very complexity of these interacting phenomena



is also the source of the inadequacies of some of our current fire safety pro-
cedures and standards, which are now based mainly upon experience and committee
consensus.

The basic fire research of the past 15 years has begun to fill some of the
gaps in our knowledge of flame structure, fire spread rate, soot production, etc.,
and current research continues to reduce our ignorance. Our present knowledge
already suffices to make a good first cut at a theoretical understanding of fire
growth in an enclosure. Moreover, the present capacity of generally available
computing machines makes it possible to quantitatively predict the fire growth
which would occur in a single room, and (probably) even in a multi-room dwelling.
Furthermore, the growing capacity and availability of large-scale computing
facilities makes numerical fire prediction a practical method for improving
public fire safety by permitting the "testing" of any proposed building design,
room furniture configuration, etc.

Mathematical modeling of fires is not new: Kawagoe's modeling of the post-

(1)

flashover fire is over 20 years old. Brief accounts of the history of model-

(2)

ing (mathematical and otherwise) can be found in Babrauskas and Williamson,
in Mitler$3) and in Emmonsga) Currently, there are at least seven groups of
workers in the field of mathematical modeling of fires, including steady-state
models, solutions of the Navier-Stokes equations for the flows, stochastic
models, etc. [See references (5)-(13)].

As pointed out above, the dynamics of fires are still imperfectly
understood and much new research is needed to provide data essential for a
fully practical fire prediction. Furthermore, the numerical handling of the

equations is still in developmeﬁt and a number of available procedures have yet

to be tried.

In this report, we present the progress that has been made in developing
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a deterministic mathematical model which computes the evolution of a fire in
a single room, from ignition through flameover to extinguishment or burnout.
This enclosure is assumed to behopen to the atmosphere, through at least one
rectangular vent in the (vertical) walls. This enclosure may contain (at
least in principle) any number of flammable objects.

The Computer Fire Code has been in development for several years. The
present version (hereafter referred to as CFC V or Mark V) is a significant im-
provement over the previous ones in a number of ways which will be described in
this report. It has been suggested that these reports be published in looseleaf
form, so that as new material emerges, new pages may be added to or replace "old"
ones. We may well do this in the future; this version, at anyrate, is self-
contained. Therefore, there is some overlap with CFC III (Technical Report No. 25).
On the other hand, there is little or no overlap with Technical Report No. 34,
"The Physical Basis for the Harvard Computer Fire Code' (hereafter referred to
as T.R. 34), to which I refer a number of times, especially in Section 5. The
whole program has been developed in a form that can be generalized by many dif-
ferent people. To accomplish this Fortran IV is used, since it is a commonly
available language.

It may be preaching to the converted, to list here the desirability of having
such a mathematical model, but let me briefly outline the advantages, nevertheless:

1. Given the detailed design of an enclosure and its contents, the course of
a fire can be followed in detail. This is an incomparably faster and cheaper
way to "test" a structure or configuration, than setting up a full-scale model.
This is so even though some special small-scale tests may sometimes have to be
carried out in order to determine the thermal and related characteristics of
special fabrics or other flammable materials.

2. The model can be used instead of many large-scale tests to determine the



relative merits of various materials used in various ways. Thus, to some degree
full-scale (corner or other) tests can be postponed to one final decision.

3. As a corollary, we can quickly identify which are the most important para-
meters determining the course of any particular fire. Hence, details of design
could be optimized according to any desired criterionm.

4. A further corollary is that performance fire codes would be possible. Thus,
a very strong code might say, for example, that "a building will be acceptable
from a fire safety point of view only if all occupants will be able to escape
no matter where, how, or when a fire starts," according to then best available
mathematical model.

5. The deterministic models will interact cooperatively with the stochastic
models concurrently being developedglz) The former models might supply some of
the a priori probabilities needed by the stochastic models in lieu of hundreds
of test fires. (It is very unlikely that all the needed probabilities can be
supplied this way: evidently those representing the behavior of people must be
supplied from empirical sources, for the forseeable future).

6. The attempt to b;ild a deterministic model has already revealed a number
of gaps in our knowledge which has led to better directions in research programs.

Thus, it is clear that the development of a good mathematical model will
become a valuable tool for the architect, builder, city planner, fire code
official, researcher, etc. It is impossible to predict how much reduction in fire
incidence and severity will result from this effort. However, since fires in the
United States result in billions of dollars of damage and many thousands of
deaths every yearfla) even a 10% reduction in numbers and severity of fires will
be an extraordinary return on investment of money and effort.

I have tried to write this report in a from which is easily readable, by

having each section start with a paragraph or two which abstract(s) the contents



of the whole section. Thus, the entire paper can be grasped in one relatively
brief reading. For the reader interested in more detail, of course, that resides
in the remainder. |

In section II, a discussion is given of the physics involved. Section III
discusses the numerical problems and approaches used by us. Sections IV and V
describe the program in considerable detail: V is, in a sense, the heart of the
program—-the detailed physics is presented there. Section IV discusses most of
the rest of the details, especially the structure and logical flow of the program.
Sections VI-VIII discuss the use, adequacy, reliability and future of the Computer
Fire Code. The listing of the program itself is quite extensive, and is reserved

for a separate Appendix, available on request.

II. THE PHYSICS OF THE PROBLEM

In this section we shall briefly discuss the various elemental processes
taking place during the fire, then indicate how we "model" that process or set
of processes.

Briefly: we have a fire ignited at a point in the center of a (horizontal)
fuel slab. The heat from the flame pyrolyzes more of the material, and these hot,
flammable vapors rise into the flame zone because of their buoyancy, and there
ignite, maintaining the fire. The rising gas entrains some of the surrounding
air, and the mixture forms a plume which rises to the ceiling. There it spreads
out and forms a hot, sooty layer. If there is enough fuel, this layer will
thicken until it comes below the top of the frame (called the soffit) of the
highest vent, whereupon buoyancy will then drive some of the layer gases out of
the room. The layer also loses energy by radiation and convection to the ceiling
and walls. Provided there is enough fuel and it burns f#st enough, flammable

objects in the room will eventually reach their ignition temperature, and may



ignite. When these ignitions begin to occur, they follow one another very
rapidly, until all flammable objects are indeed burning. The transition period
between ignition of the first 'target item”" and full room involvement we refer
to as ''flameover;'" it generally only lasts a few seconds. Often flameover
accompanied by, or closely followed by, '"flashover'", defined here as ignition
of the layer gases, with flames emerging from the room of origin through one or
more of its vents.

In the following paragraphs, I shall discuss these processes in more detail.*
Implicit in the description above is the recognition that, although in principle
the fire is one very complex phenomenon, we can analyze it by '"dissecting" it-—-
i.e., by successively focussing our attention on various features of the phenomenon
(indeed, as soon as we distinguish one "'feature'" from the rest of the context, we
have performed part of this dissection!). Thus, we assume that we can adequately--
even accurately--describe the fire by a set of individual subprocesses with inter-
actions among them.

A. The Fire.

We consider three possible kinds of fire: a burner fire, a pool fire, and
one growing on a slab.

The burner is the simplest, as both its radius and the (gaseous) fuel flow
rate are externally prescribed, are generally constant, and are independent of
conditions in the enclosure.

The pool fire has, by definition, a constant area. We generally restrict
ourselves to circular pools. However, the heat per unit area received by the
fuel serves to gasify (evaporate or pyrolyze) fuel. The heat transfers to the
fuel surface are by convection ahd radiation from the flames, from the walls

and ceiling of the room, and from the hot gas layer in the room. Since these

*
For still greater detail, see T.R. 34 (reference (3)). Also chapters II and III
in reference (15).



vary with time, the pyrolysis rate from the pool also varies.

Finally, we have the growing fire: here, ignition is over a small
area, but the heat transfe?s to the as yet uninvolved solid serve to
heat it sufficiently that the fire grows. Although many theories of fire
spread exist, none is adequate to predict the fire growth from first
principles. Fire spread tests show the rate to be controlled'by the fuel's
surface temperature. However, CFC V uses a semi-empirical formula based
upon open-air burning tests of the given fuel item.

(17)that the pyrolysis rate and radius

These tests have consistently shown
grow exponentially with time; between 80 and 170 sec. For earlier times,
it grows more rapidly (as a power law; see pp. 77-8 of reference 18), but
we ignore that and therefore use an effective initial radius which is
larger than the real radius, but consistent with exponential increase from
the beginning.

Our formula specifies a relationship between spread rate R and the net
impinging heat flux. The heat flux to the surface normally consists of
convection and radiation from the flame; for large luminous flames the
latter is the more important, by far. In an enclosure, the heat flux
is augmented by radiation from the hot layer and the hot ceiling (and
walls); this feedback accelerates the burning rate, sometimes by a large
factor, and our expression gives this. Again, although an expression
for the convective heat flux from the turbulent flame back to the pyrolyz-

(19

ing surface can be written down [see, for example, de Ris )], we prefer

to use a simpler expression in this version: for large flames, convection
is negligible, so that the net flux is the difference between the external
radiation and the reradiation from the burning surface. For a small flame,

in contrast, radiation from the hot surface is considerably greater than
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the radiative flux to the surface from the flame, so that the surface would
cool and the fire be quenched, but for the convective heat flux from the
flame. We therefore add a convective contribution which falls with the
radius at a rate such that the observed growth rate of the fire is main-
tained. This is ad hoc, but no more so than the assumption made in
previous versions (CFC III and IV) that convection just cancels reradiation
at all times.

The flame itself is generally luminous, turbulent, inhomogeneéous, and
anisotropic. We have nevertheless had surprising success so far, in
modeling it as'a grey, homogeneous cone. Indeed, for some of the radiation
formulae we have gone even further, and assumed it to be a point source
at the radiation centroid! For Mark V, we permit the vertex angle (2y)
of this cone to increase appropriately, when the flame height is reduced
by oxygen starvation or because the fuel nears burnout. The temperature
and absorptivity of the flame gases is obtained by experiment. The as-
sumed structure of the flame then determines the fraction of the heat
released which emerges as radiation; the maximum value is empirically
determined: for the flexible polyurethane foam which we have principally
used in our experiments (P.U. #7004), this value is about 0.43.

Finally, in all the above cases, the efficiency of combustion--that is,
the fraction x of the heat of combustion Hc which is actually released in

the fire--is empirically determined, too. For P.U. #7004, it is about 65%.

B. The Plume.
(20)
The only plume model we have used is that of Morton, Taylor, and Turner 3
detailed descriptions are given in T.R. 34 and in part V of this report. As

in most of the rest of the physical processes involved, we assume that the

mass and energy transfers from the fire to the layer is instantaneous--
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i.e., there are no plume transients. The Morton, Taylor and Turner model
also assumes a point source of heat, and the Boussinesq approximation

(weak buoyancy). We assume a virtual point source below the fuel surface,
at a distance such that the plume radius at the surface is just the fire
radius. For the growing fire, of course, this distance also grows appropri-
ately.

C. The Hot Layer.

Up to now we have used a two-layer model: the lower part of the room
has ambient air only, while the upper part contains the hot, sooty layer,
also assumed to be uniform in all of its properties--temperature, species
concentration, absorptivity, etc. Again, this is not completely realistic,
but it permits enormous theoretical simplification, and has worked reason-
ably well.

The layer receives mass and energy from the plume(s), and loses same
through the vent(s). It also gains energy by absorption of some of the
radiation from the flame(s), exchanges energy with the walls and ceiling
by convection and radiation,* and loses energy by’radiation to the floor,
out the vents, etc.

The concentration of 02, Cco, CO,, H,O0 and "smoke'" are calculated based

2’ 2
(21)
upon empirical small-scale tests [see Tewarson 1.

The absorptivity of
the layer is provided in one of two forms. The preferred (default) form
gives k as a simple function of the smoke concentration. It is assumed
to be grey, and the effects of 002 and HZO molecular band absorption are
ignored. A more elaborate program which may be chosen by the user at run
time calculates ¢ from the concentration of COZ’ HZO’ and smoke [see

Modak(zz)].

*
Energy is lost during the growth phase, gained when the fires are dying
out or gone.
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D. The Vents.

The flows through each vent in the room are calculated separately,
taking the appropriate pressure at the center of the floor and using a
hydraulic treatment for the thermal expansion and buoyant flow through the
vent for that pressure (with an empirical flow coefficient). The appropriate
pressure is determined by demanding that the net flow satisfy mass conser-
vation.

E. Heat Transfer by Radiation.

There is radiative heat transfer between all bodies which can see
each other, including flames, and radiative absorption and emission by
intervening material. All these exchanges--among walls, ceiling, hot layer,
flames, fires, and targets--are computed at present in different subroutines,
in various (roughly equally accurate) approximations.

F. Heat transfer by convection.

Convective heat transfer between the hot layer and the extended
ceilingf between the outside (of the room) surface of the heated walls
and the outside ambient air, and between the hot or cold layer and 'target"
objects, is calculated.

G. The heating of walls and "target' objects.

The net heat received at the surface, from radiation and convection,
is taken to enter a solid according to the one-dimensional non-steady
heat conduction equation, which is solved on an automatically set space
gfid through the thickness of the material: this yields the temperature
profiles through objects. This is done in subroutine TMPO@2. We also
include TMPO@l, an approximate calculation which was originally derived

from the time-dependent solution for an infinitely thick solid exposed

*
The "extended ceiling" mears the ceilirg plus the umner part of the side
walls covered by the hot layer.
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to an exponentially increasing heat source. (TMPO@2 is the default
version.) The same basic equations are used for the walls; however, in
order to avoid having a wail temperature profile which varies as a function
of height, it has been assumed that as the hot layer deepens, the newly
exposed section of wall instantaneously absorbs enough energy from the
layer to give it the same internal profile as the rest of the hot wall.
Of course this is incorrect, as too much energy is thereby removed fram
the layer. We compensate for this error by taking half that energy, instead.
The resulting differences are in fact very small. This calculation is
made in subroutine TMPW@L.

This completes the description of the physics involved. Next, we
turn to the solution of the resulting equations.'
IITI. NUMERICS.

The equations which describe each of the phenomena discussed above
have to be written down and solved simultaneously. For Mark V, there are

15 variables associated with each room:

ROOM: EL = energy of the layer
éL = time rate of change of layer energy
o = mass of the layer
mL = time rate of change of layer mass

ELR = net power gain of layer via radiation

éLD = net power gain of hot layer via convection
hL = depth of the layer
TL = temperature of the layer

y(02) = mass concentration of oxygen in the\layer

mass concentration of carbon monoxide in the layer

<
~
Q
(=]
~

0

= mass concentration of carbon dioxide in the layer

«
7~
(@]
o
(&)
o’
|



y(HZO)
y(S)

Ap
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mass concentration of water in the layer
mass concentration of smoke in the layer
pressure at the center of the floor (relative to ambient)

absorption coefficient of the hot layer

’

Each object in the room involves 14 variables:

OBJECT: m

tan ¢

He

au

mass of the object

rate of increase of object mass (negative)

negative of power release by combustion of its fuel vapors
surface temperature of object

radiative flux from the layer

radiative flux from the walls/ceiling

radiative flux from all flames

height of the lower part of the plume above the object*
rate of mass transport from the plume into the layer
rate of energy transport from the plume into the layer
power loss from the flame by radiation

radius of the base of the flame

2y is the vertex angle of the cone modeling the flame
when the object is flaming.

rate of entrainment of mass from the layer into the upper
part of the plume. Taken to be zero in Mark V.

*We often refer to "the plume" as that part of the upward-flowing gases
associated with the fire, lying between the fire base and the inter-
face with the hot layer. 1In fact, of course, the plume continues up
to the ceiling, although its character must change. Although in this
version we do not yet include this upper part of the plume (between the
interface and the ceiling), we have set aside a variable for its future
inclusion (see ﬁau)'
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Each vent in a room wall involves 3 variables:

VENT: ﬁu mass (out)flow rate of hot (layer) gases

ﬁd = mass (out)flow rate of ambient air

éu = energy outflow rate convected by hot gases

Each "wall" of a room involves 2x 4 = 8 variables:

WALL: 'I‘w = surface temperature of the wall
¢Lw = radiative flux from hot layer to wall
¢FW = radiative flux from flames to wall
¢LWD = convective heat flux from hot layer to wall

Each of these has two values, since the wall has two sides.

Thus the total number of variables--and hence equations-- is

N = 15r + l4do + 3v + 8w ¢

where of course r is the number of rooms, o that of objects, v the num-
ber of vents, and w the number of walls. The '"standard room" that we
deal with has one "wall" (the extended ceiling), two objects (the
initially ignited slab, and a target), and one vent (a doorway). Hence
r=1, o=2, w=1, v=1, and N(S.R.) = 15+2x14+3x1+8x1 = 54.
Thus, our "model" consists of a set of N coupled simultaneous
equations in N time-dependent variables. Most of the equations are linear
or non-linear algebraic equations. There is only one partial differential
equation (for the diffusion of heat into a solid). All the rest of the D.E.'s

trivial linear ordinary differential equations in t.
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Consider the latter, first: We obtain, for example, the variable
ﬁL(t) (the time rate of change of the hot layer mass) from a mass con-
servation equation. Since we also need mL(t), we '"'solve'" the differ-

ential equation
d .
3o oy (8) = iy (t)
The solution is of course utterly trivial:
m () = gfi (eDde!

The numerical solution is found by using

mL(t) = mL(t-At)-l- ATt[thL(t-At)+ﬁ1L(t)]

3
This is the trapezoidal rule; the inherent error is _Q%%%_ ﬁi(T) in this
time-step* (where t - At <1t <t), so that the total error (assuming uniform
3
_ (ae)” ° _
time-steps only) is 3 tgimi(Ti)’ where n = t/At. If we approximate

the sum by an integral, we evidently have a cumulative numerical error

3
Error = - (ATtZ)-(ﬁiL(t) -fr'-L(O))-

* Provided that m(t) and its first three time derivatives are continuous.

If m(t) is discontinuous, the error will be proportional to At.

(2)

(3)

(4)

(5)
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2. Methods of Solution
At present, we use two methods of solution for this set of equations,
both of them iterative. First, a successive substitution method; if and
when that fails, we use the more powerful multivariate Newton-Raphson
technique. The following is a detailed discussion of these techniques.
The principal method of solution is the successive-substitution
method. This means that the variables x are calculated iteratively:
after k iterations, the (k+1)St value of variable x is found by writing
NN 6)
where X = {xi} is the array (loosely referred to as a '"vector") of
values previously found. Each of the variables is a function of t, but
that explicit t-dependence is not shown, in order to make the equations
more succinct. The solution represented symbolically by ; = EGI) is
understood to be the solution at some given moment t. On the other
hand, there is generally no explicit t-dependence in any of the functions
gy If we take all the x; on the right hand side of eq. (5) to be xi(k)"
that is, the values found in the previous (kth) iteration--then we have
the Jacobi variant of the successive substitution method. It is the one
which has been used in all versions of the program up through CFC IV,
and is handled in subroutine JACB. 1In CFC V, ;e‘qse the Gauss-Seidel
method, instead (the subroutine name has not been changed, however); in

this variant, we always use the most recently found value of a variable.

*
Thus, if we solve for the variables X4 in succession, we have eqs.(7):

*
Starting with eq. (7) and thereafter, we drop the parentheses about the
index showing the iteration number, for simplicity. It should be clear
from the context that the kth power of xj is not meant.
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k k k k
= gl Xl ’ X2 ’ X3 300 ey Xn )
_ k1 k  k K
= 82 xl ’ X2 > X3 ’ -°-->Xn (7)
_ Kkl k#l K K
83 Xl ’ X2 [y X3 sy Xn

k+1

k
X =g(X)’

successive substitutionmethod for one variable,

(6a)

geometrically. Refer to figs. la-d. We always start with x as our
o

initial guess.

b - - - -

A

\

X(D X2 X‘

X

0]

Fig. la. Geometric illustration
of successive substitution method.
is the starting trial value.
Note that g'(x)<l.

Y

T\y=9(x)
X0

Fig.lb. In this case, g'(x)<0, but

lg'(x)|>1.

In figures la and 1lb we get convergence; for the latter case (g'<0) we

evidently have the successive iterands oscillate about the correct answer.
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/ Xo x xo\ x>
y=g(x) y=g(x)
Fig. lc. Same as fig. la, but Fig. 1d. Same as fig. 1b, but
g' (x)>1. lg' (x)|>1.

In figures lc and 1d we see two cases where we would not get convergence;
in the latter case (g'(x)<-1l) we get diverging oscillations. It is thus

clear from the geometry that we can only get convergence when

|g' (x)|<1 (8)

in the region (x,xo).

A
y

A more insidious problem occurs

when we have g'(x)>1 in the vicinity

of the desired root, but g'(x)<1l in

the vicinity of an incorrect one, as

—p X shown in fig. le. For then, if the

X0
Fig. le. Convergence to a wrong starting value is on the ''mear' side
root.
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of the root, we will get convergence, but to the wrong value!

An important feature of Jacobi is that the results are quite inde-
pendent of the order in which the equations are solved. This is clearly
not the case for Gauss-Seidel, and the result is that some orderings
will require more iterations than others, for convérgence. Indeed,
for some cases one ordering may diverge, while another ordering converges.

The Gauss-Seidel method* has worked much better for us than the
Jacobi mehtod: it converges over a slightly wider domain, and generally
far fewer iterations are needed. This method has been further refined

and made more robust by using a damping factor: 1let us define

k _ -k k
Ax, = gi(x ) = X4, (9
< S S N o R S el ko k K
where FX) e Xy Xy s eeeXype Xge Xyppr eee¥ye (10)
Then Gauss-Seidel yields
k+1 k, .k
x, = xi+A X, - (11)

However, it is found that for many variables, successive iteration values
oscillate about the final value, even as they converge to it. See, for
example, figure 2a. This "overshooting" phenomenon can be reduced by

taking only a fraction of the '"correction" Akxi:

L
k+1\ _ _k k
(xi ) = xi+AiA X, .

A;l is called the "damping factor" for that variable. Fig. 2a shows the slow

oscillatory manner in which some variables converge by Gauss-Seidel

without a damping factor. This procedure

* With one minor modification; see section 3, "Inputs and Outputs in the
Physical Subroutines."
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Fig. 2. Selected examples of how variables converge (or diverge:) as a
function of the iteration number, IT.
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will sometimes lead to the convergence of an otherwise divergent series.
Thus in figure 2b, the diverging osci  itions of the variable hp (plume
height) are clearly in evidence; by switching to A = 1/2 after the sixth
iteration, this variable converged quite dramatically, as shown by the
dashed line: the variable is completely converged by IT = 12. Figure 2b
is somewhat misleading, actually: although still more uﬁstable variables
are tamed by this procedure, its power is nevertheless limited, of course.
A more typical example is shown in Fig. 2c¢. The variable illustrated

there, incidentally, TELZZ = E has generally been the most sensitive

L’
one, because (as seen in subroutine LAYR) it is the generally small
difference between large numbers. We will come back to this in the
section on convergence criteria.

Some numerical "experiments' showed that the best overall results
are obtained by taking the same damping factor for all the variables,
i.e., Ai = X. We also do best if we carry out the first three iterations
with A = 1, followed by A = 1/2 for all subsequent iterations. Note that

taking A = 1/2 means that [from eqs. (11) and (9)]

Kk K
k1]’ = x5+ 1/2 [kJ- kIl _ xi+_gi[x_L .’i:_{;:l_ (12)
Xy Xq il* |7 *1| T 2 2 .

That is, we take the arithmetic mean of the current and the previous
iterations. In versioms III and IV of the CFC, we iterated 100 times;
if convergence did not then ensue, we switched immediately to a more
powerful algorithm--the Newton method, to be discussed shortly. In the
present version, if convergence does not occur in 35 iterations, then

instead of immediately going to the Newton method, we halve the time
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interval, instead (to At = 1), and start over. If it then succeeds in
converging, we run along with At = 1 for a number of steps (that number,
to be described shortly), then double the time increment, since the
difficulty may have only been temporary. On the other hand, if it still
does not converge in 35 steps with At = 1, we halve again. And so on.
If this procedure does not produce convergence by the time that At = 1/8,
we then switch to the Newton method, with At = 1/8. 1In this version,
moreover, we try to switch back to Gauss-Seidel after a reasonable time,
as will be described later in this section.

In any iterative procedure, we must have starting values (for each
time t). And in order for the procedure to converge, these must lie
within the '"circle" of convergence (the N-dimensional volume in variable
space, actually) corresponding to this method. Moreover, unless we are
in an unstable region (where the circle of convergence has shrunk to a
point), the closer we are to the correct solution, and the faster we will
converge.

We assume that all the physical variables are continuous functions
of time. We then have available at the outset of the solution at time
t+At a very good initial guess for ;(t+At): namely, the previous solu-
tion vector ;(t)--or better, new values extrapolated in time from ;(t)
and ;(t-At). Moreover, the accuracy of such an intitial guess may be
made arbitrarily good by cutting the time step sufficiently. For
version V, we use the (converged) solutions for the three previous time
steps to carry out what is essentially a quadratic extrapolation for
each variable, in order to have good starting values. That is referred
to as the "zeroth" iteration (IT = 0). Our basic fime increment has

been At = 2 sec, which is large enough to permit solution of the overall



-22-

fire problem in a reasonably short time, yet small enough to introduce
only relatively small numerical errors.
When the method converges, it converges linearly. That is, for

sufficiently large k (i.e., k > kc).

xik‘u)-xj(.k) = Ci[xik)—xik‘l)] (13)

for all k>kc, with |C1|<1. This holds for Gauss-Seidel as well as for
Jacobi. If ICi|3l for any i, however, then it does not converge overall.
The overall convergence rate evidently goes as max{ICil} = C. We can
then also write, symbolically,

| X)) = o) Z*x || (14)

where X is the exact solution (at time t). Then for C<1l, the algorithm
will yield convergence to the solution, taking roughly a constant number
of iterations for each successive increase in accuracy by one decimal
place. If only constants C>1 can be found for all values of At, the:
algorithm will fail, and the vector will tend to diverge at the same
steady rate. It is easy to show analytically that C is the maximum value
of |g'(x)| in the interval covered by the iterations, as was indicated
by figs. la-d, and given by eq. (8).

The second method used for the solution of the equations is the
multivariate Newton-Raphson technique [see e.g. reference (23), §71-3, 80].
Whereas the Jacobi method is directed to solving a system of the form

E(i) = ;, a Newton method works on a system of the form ?(;) = 9.
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Therefore, we begin implementing any Newton kind of method by defining

the vector function ? as follows:
) = x-2(%) (1

In one variable, the Newton-Raphson method assumes that f(x) is linear;

(k)

so that if at the kth iteration the value x is not a solution--i.e.

fk = f(;k)# O--then the "correct'" value is given by

k
Ll ko f &k) (1€
£'(x7)

The method can be visualized as a process of extrapolating from each

approximation to the next along a tangent line:

Fig. 3. 1Illustration of the geometry of the Newton-Raphson Method.

In this example, the process will (clearly) converge rapidly.
Note: Using eq. (15) in one dimension, we can write eq. (6a), which

describes the succesive-substitution method, as
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<+
xk 1. xk-f(xk).

(Note that for a single variable, there is no difference between Jacobi
and Gauss-Seidel). Comparing that with eq. (16), it is clear that the
two methods would be the same if f'(x) = 1.

There are two general cases where the Newton technique will fail to
converge: first, if we are too far from the desired root for the initial
guess, we might--at best--converge to an incorrect root, as is clear from

fig. 4:

Root to which we
would converge

Correct

Root ~—
\

Figure 4. Example of convergence to an incorrect root, when we start the
Newton process outside the region of convergence.

That is, we start outside the region of convergence. Second, as is clear
from eq. (16), it will fail if f'(xk)= 0 for some k. Indeed, even if
the derivative is not precisely zero, but merely very small, it will
take the next iteration outside the region of convergence.
It is not difficult to show [see ref. (23), § 78] that a sufficient

condition for convergence is

18 |2 > 18G5 | (17)

for all k.
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The Newton-Raphson technique can be generalized to the case of n

simultaneous equations (in n variables). Then eq. (16) becomes

+ -
L FEEY (18

of
where J is the n-by-n Jacobian matrix 3;1
[ of of ]
1 1
Bxl X
g-|lIIIIls ay
of of
——n--——
Bxl X
4

If we write out the inverse of Jin terms of its cofactors, we find that

for the ith variable, eq. (18) yields

iy g f o 2y
Bxl Bxl_l 1 8xi+l 39X
el k-1 I ;
0 THTD o S ; (20)
of of Y 5f
—n_ - n_o¢ n ____-1
Bxl axi_l n 3xi+l an . O
X =X
where D = det(d) (21)

To implement eqs. (18) or (20) numerically, we need the Jacobian
matrix J at each iteration. It is not practical to determine J directly
by computing partial derivatives analytically, so we use a finite dif-

-k
ference scheme. To compute column j of Jwe perturb x by the small
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. th .
amount h in the j position. The perturbed vector may be written

-k -> ->
x + hej, where ej represents the unit vector with 1 in position j

and zeros elsewhere. We then set

fi(§k+h'é.>-fi(§k)
J,. = J ,i=1, ..., n. (22)

ij h

We have taken h = 6~x§ with ¢§ = 10-4 in previous versions of the
program. This occasionally has led to trouble, and in this version we
use § = 10-3, which seems to work more satisfactorily. (See comments

under the Scaling of Variables section). Computing the full matrix J

means going through eq. (22) n times. Once J has been estimated, we do
not directly compute its inverse, as eq. (18) would suggest. Instead,

we rewrite eq. (18) in the form

o) - 7(3%) (23
and solve this linear system for ;k-;k+l, from which ;k+1 can be determined,
since ;k is known. The linear system is solved by Gaussian elimination
with partial pivoting (ref. (23), p. 270 ff) using the code fo Forsythe
and Moler (25). The algorithm of Gaussian elimination used in solving
this system begins by decomposing J into the product of a lower-diagonal
matrix L with 1's along the diagonal and an upper-diagonal matrix U;
performing this L-U decomposition takes about n3/3 multiplications (ref. 26).

The computational time required by the Newton method is used primarily

in two steps of the algorithm: in n evaluations of f to compute J, and
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in solving the linear system (23). These jobs make one iteration of the Newton

method much more time-consuming than one iteration of the Jacobi (or Gauss-Seidel)

method.

On the other hand, Newton methods often will converge with far fewer iterations
than the successive substitution methods: if an exact Jacobian were known at each
iteration, then the algorithm given by eq. (18) would converge not linearly but

quadratically, i.e. for all k greater than some critical value ks

, 13T <) 22 K>k 2

(c.f. equation (14) for the Jacobi method).
The quadratic dependence means that a reasonably good initial guess ;0 is very
important, but that fast and reliable convergence may be expected when one is
available, as long as the n-dimensional generalization of the convergence
criterion (17) is satisfied. Eq. (24) implies that convergence will take roughly
a constant number of iterations for each doubling in the number of significant
digits.

Our finite difference approximation to the Jacobian is not exact, so that
in fact we are using a secant, rather than the tangent indicated in figure 3.
It can be shown that this leads to a rate of convergence which is neither linear
nor quadratic; instead, we should expect the norms to follow

1,839
| & -x e % k >k, (25

for the secant approximation, in one dimension. See, for example, Jarrat, in
reference (29). It is also shown there, incidentally, that the Newton method,

in this approximation, is equivalent to quadratic interpolation.
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Super Fast Newton Method (NWSF). The full Newton method is quite time-consuming,

and alternatives were devised. The simplest technique is to recompute the Jacobian
not at every iteration, but perhaps only once per time step. Indeed, if I(t) varies
slowly enough, only once every few time steps. This works much of the time,
and is indeed very much faster than the use of NWTN.

We also had a "fast Newton" subroutine, NWTF; this uses a compromise method
which updates the Jacobian only partially at each iteration. Specifically, at

the beginning of each iteration it examines the vector ?(;k) to determine which

component of f is largest in absolute value -- farthest from the desired value
of 0. Suppose this component is fj' NWTF then updates only the jth column of J,
using eq. (22). Thus only the partial derivatives with respect to variable x, are

3
recomputed, in the hope that this will reduce the magnitude of fj substantially

at the next iteration and so bring the system significantly nearer to a solution.
In practice it was found, however, that NWIF was not much more useful than NWSF,
although slower. It has therefore been dropped in CFC V, along with MODJ, its
implementing subroutine.

The computation proceeds as follows: the calculation runs along in
Gauss-Seidel until it fails to converge in 35 iterations. It then cuts the
time step in half and starts over again in Gauss-Seidel, using newly
extrapolated values from the previous time steps; this guarantees a starting
solution closer to the correct answé;iwhich generally leads to convergence.
However, failure to converge in 35 of these smaller stzps causes another cut
in the time step. Until we manage to converge, the time step will repeatedly

be halved; this will be repeated until
At Ato/20 | (26)

where At is the newly cut time step, and Aty the originally chosen time step. At
this point, we switch over to NWIN, with time step of At. With the canonical

Ato of 2 sec, we switch over to NWIN when we fail to converge with At = 1/8. We
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go ahead in NWIN, with this new At = 1/8th sec, for to = 2,

Now, suppose we have had to switch to NWIN. If NWIN converges, we use NWSF
for the next time step, with the same time increment. With one exception, it will
then continue in NWSF with the same increment for a number of steps; when the
total number of time steps taken since the beginning of the program (NT)
reaches a multiple of 10, the time increment is doubled (thus the exception is,
when NWIN happens to converge at NT =10m - 2, one NWSF step is taken at NT = 10m- 1.
and the next one is NT = 10m--thus it takes just the one step with At, and then
doubles At immediately).

The solution mode will remain NWSF until it ceases to converge (in which
case it goes back to NWIN, and we start over), or until the size of the time
step just taken is > Ato/4, in which case it switches back to the Gauss-Seidel
mode. Thus if NWIN converges for At = 1/8, the program will switch to NWSF with
At = 1/8, continue that way through At = 1/2 (assuming success all the way), and
switch back to Gauss-Seidel with At = 1/2. Again, it takes a number of (successful)
steps in G.S. mode, until NT = 0 mod(10) (as usual), whereupon At is doubled. This
doubling procedure continues until At = Ato again, where it stays, or until trouble
occurs again. On the other hand, if NWIN fails to converge with At = 1/8, it tries
again with At = 1/16 (still in NWIN). If that still fails to converge, the
message "'YOU ARE IN TROUBLE" flashes on the screen, and the built-in "debugger"
is invoked, giving us the option of stopping the calculation, or of continuing
to cut down the time increment. (Unfortunately, the latter procedure is generally
useless.) When running in batch mode (see section IV, esp. IV,7), an
automatic program stop is produced, without invoking DEBUG.

There are two other cases when the time step is cut: we want printout at
some integral multiples of a reasonable § t--generally, 10 seconds; if At is such that

t+At is greater than the next multiple, At is cut down to At”, the increment needed
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to make t + At” = 10p (p integral). Again, when an object ignites, it of course does

so within the current interval At -- say, it ignites at t+ét < t+At. In that case
the next increment is &t”°, where 6t¥6t’=At. In these two cases, where At is cut
for printout or ignition, the original time step At is immediately restored.
Finally, we might point out that while in the Gauss-Seidel mode, we never
take fewer than five iterations (even if the convergence criterion is satisfied
for IT < 5), because the convergence criterion we use is far from infallible and
we are prone to getting a spurious 'convergence" for IT < 4. (We occasionally
get a spurious convergence even with a large number of iterations!) There
are a number of other minor restrictions and exceptions which we need not go into
here.
3. Inputs and outputs in the physical subroutines.
The simplest way to proceed would be to have each use of an equation
in the physical subroutines result in the new value replacing an old one for
the corresponding physical quantity. For example, the equation yielding the

heat flux from the layer to the ceiling is

"
apy = By (Ty = T (a)
where hi is the heat transfer coefficient of the layer gases, Ty, the layer
temperature, and T that of the ceiling (see subroutine CNVW, in section V).

This equation could be realized as
FQLWD = HI*(ZKLZZ - ZKWZZ) (b)

This value would then immediately be placed in VAR, and if an equation used

subsequently contained FQLWD on the right-hand side, the value taken there
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would necessarily be the one just calculated by eq. (b). This is just the
Gauss-Seidel prescription, in the successive substitution mode.

To allow more flexibility in varying the method of numerical solution,
however, it is necessary to be able to manipulate equations like (b)
more freely by separating inputs (right hand side of the equation) from
outputs (left hand side). Except for the Gauss-Seidel variant, we do not
want the output of each equation to become the new value of the corresponding
physical quantity. For example, the finite-difference calculation of eq. (22)
requires a determination of gi(;k+ th), but by no means do we want this
artificial quantity to replace the previods value of X4 Only after the Jacobian
matrix has been determined will a new X5 be determined by solving the linear
system (23).

We separate the inputs and outputs as follows: the physical subroutines

get their inputs x, from (the appropriate places in) common block VAR. Each

i
output variable has the suffix "1" added to its name to distinguish it from the
corresponding five-character name appearing in /VAR/. Thus eq. (b) is written
as
FQLWD1l = HI*(ZKLZZ - ZKWZZ) (c)

This output could be put into the argument of subroutine CNVW; we have chosen,
instead, to place these outputs into common block VAR or NEWVAR after each sub-
routine call, depending on whether we are using Gauss-Seidel or Newton method.
This is discussed in greater detail in Appendix 6.2 of section IV.

It must be pointed out here that this procedure will sometimes prevent the
Gauss-Seidel method from being fully implemented: when variable Xy is calculated
in one part of a subroutine, and then used in a later part of the same subroutine

to evaluate another variable X it will be the Jacobi technique which is

implemented within the subroutine. To the extent that this occurs, we actually
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have a hybrid algorithm, rather than "pure" Gauss-Seidel. But this happens for
only a few variables, and the departure from G.S. is quite small.
4, Scaling of variables. ‘

The physical variables in the computer fire code range in magnitude from energies
on the order of 107 (Joules) to masses on the order of 10-5 kilograms, and even
smaller quantities. For a variety of reasons, it is difficult to work numerically
with sets of variables that range as these do through twelve or more orders of
magnitude. One problem comes about as a result of the finite accuracy of the
computer's floating point representation of numbers; for example, in estimating
a partial derivative according to a finite difference f(x + h) - f(x), the per-
turbation h cannot be too much smaller than x in magnitude when x is already small,
or the machine will compute the resulting difference as exactly O or at least
compute it inaccurately. Again, in order to have maximum accuracy in solving the
simultaneous (linear) equations in the Newton mode, we need to have all the
variables of comparable size. In previous versions, we did this (for all
numerical modes) by multiplying each variable by some multiple (or submultiole)
of 2 — i.e. 2™ —— in an "interfacing" subroutine SCAL. The logical flow of
the program was complicated by this, however, and so we tried to drop scaling
altogether. That gave poor results, but we have found good results by scaling
only in the NWIN mode. We ﬁc longer use the multipliers 20 -- instead, we
use the value of the variable itself, as a scaling factor. Thus, whenever
Newton is invoked, the variables are first all scaled to unity; then the
derivatives for the Jacobian matrix are found. That is done as indicated by
eq. (22).

5. Convergence
Our general convergence criterion is that two successive iterations do not

change the value of any variable by more than some small value. Since we
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want the relative accuracy to be about the same for all variables, we

normally would demand that.

Axi

Xy

< €. (27)

for all i, where Axi = xi - xik. Now, when a variable takes on

a very small value, such that it essentially ceases to have physical
significance, we cease to test if for convergence. (The array of these
minimum values is called VMIN, in the program, and appears at the end

of the DATA BLOCK.) When a variable takes on a value greater than but
comparable to its VMIN value, then of course we do not need the accuracy

given by eq. (27). Indeed, an accuracy within a factor 2 is sufficient.

Hence, eq. (27) is replaced by

Ax x
—| <max| 4 min, €| (28)
i X,
where x is the VMIN value of variable i.

i min
On the other hand, suppose variable j is the small difference of

two large numbers. Then in order for xj to be computed to within €s
its large constituents must be computed rather more accurately! This
means that (a) some variables are computed much more accurately than
€. and (b) by the same token, if we take €. too small, truncation and
round-off errors begin to be significant, and will make it literally
impossible to get "convergence', so that € must be judiciously chosen.
The value €. is called TOLER in the program, and is taken to be
3 x 10-4. This value is small enough to give satisfactorily accurate

answers, but large enough to permit convergence in a reasonable

time.
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Ax
x5 is smaller than €. then eq. (27)

Evidently if the largest value of

is satisfied for all i. Since we want to use the criterion (28) instead

Axi Ec
TEST(1) = xiE max (ec, X, min/lxil)

The largest value of TEST(1i) is then the NORM at the kth iteration. (In
Gauss-Seidel we refer to these as HNORMS; in Newton-Raphson, as FNORMS.)
Thus we find the NORM at each iteration; when NORM < e, we say we have
converged.

In the G.S. mode, we (generally) take as many iterations as needed,
to 35. The NWIN mode is so much more time-consuming, however, that we
want to take as few such iterations as possible. This means that we want
to determine very quickly, whether we are diverging or not. This is
done is subroutine CONV. We can only begin to make an intelligent guess
as to whether the procedure is converging or not, when we have a minimum
of three iterations. Since the zeroth iteration is the predictor, this
gives us three FNORMS. We then examine them. If the norms are mono-
tonically decreasing in value, we can make an estimate of how many more
iterations are probably required to converge according to our criteria,
This information is not used in the present version, however.

If the three norms all correspond to the same variable, and the most
recent one is larger than the first two, it's a good bet that the pro-
cedure is diverging -- we halve the time interval, rather than (probably)
waste time. If we've already halved the time increment once, however,
it seems unlikely that we'll get convergence by halving the time interval
again, with this method. (Still, the debugger is invoked at this point
in order to give us various options, rather than jﬁst stopping the
calculation, unless we are in batch mode.)

On the other hand, if the three norms do not all correspond to the

same variable, we have insufficient information to be able to decide,
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again with the same At.

Finally, we note that there are islands of instability--although "trenches"
or "black holes" may be more apt descriptions! Some of these will be discussed in
section VI. Here we mention only the following: a 500-sec run converges smoothly
and with no notable difficulty, taking (mostly) 2-sec. steps. But if we change the
basic time step to At=l sec, we run into trouble at t=409: we cannot converge at
that value! Evidently this caused no difficulty with At=2, because we stepped over
the "trench" which begins at 409, going from 408 directly to 410! This difficulty at
t=409 remains until we get down to At=0.125 sec. Then a smaller trench appears, at
t=359.125. This of course suggests a simple way to overcome difficulty at
any point: try to step "over" it. This may do the trick, but sidesteps the issue
(no pun intended).
6. Accuracy

In principle, the smaller we make ¢.» the cpnvergence ;riterion, the more
accurate the overall result should be. Similarly, the smaller we make Ato,
the basic time increment, the smaller will be the errors arising from the use of
numerical approximations of various sorts. There are two principal limitatioms,
however. First, the practical one: the smaller we make €g» the more iterations
have to be taken in order to converge; moreover, the more likely we are, in
fact, to fail to converge at all. Indeed (as pointed out earlier), if we demanded
too much precision we would run into truncation errors, and we could never
converge. The second limitation is one of principle: for a given time step
Ato, the (fractional, rms) numerical error is € which evidently is proportional
to some power of Ato. For small € and a large Ato, the numerical error dominates.
For sufficiently small Ato, on the other hand, the principal error will be due to
the finite ec. In the latter case, the total error at the‘end of n steps will

then be Nnec or nec, depending on whether the errors are systematic or random.
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But for a given run length t, nwt/AtO, and hence the total error will grow. Thus
there is an unavoidable minimum error for any run.

Let us now consider these erroré in a little more detail. First, again
consider € Our developmental work is now principally being done on a VAX
11/780. The VAX is a 32-bit machine--of these, about 24 bits (in single precision)
are reserved for the mantissa, corresponding to 7 decimal places of accuracy. Thus
setting €. = 10-7 would result in immediate failure to converge. 1In fact,
because at least one variable (ﬁL) is the small difference of large numbers, 10
would be very troublesome. The value 3 x 10-4 was chosen after numerical
experiments showed that the final answers (for a 500-sec run of the standard
problem) did not differ by more than a few percent for this value of € compared
to more accurate calculations (i.e., with smaller EE'S)' Larger values of €.
resulted in deviations judged to be unacceptable in magnitude.

Next, consider the overall error per step. (I will omit the qualifier
"fractional" in front of error, as understood from now on. Similarly, if a
particular variable is not mentioned, "error" means "rms error'). For a convergence
criterion €os the mean convergence error will be Bec, with B of order unity, and the
errors will be assumed to be random. If the numerical error Eh is also random,

and incoherent with the convergence error Bsé, then the error per step will be

and the total error after n steps,

€ i‘jrﬁ (30a)

On the other hand, if the numerical errors are systematic, then
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= +
€ = ne_ Jﬁssc (30b)
If the basic time increment is Ato, then for a run of duration t,
n > t/Ato (31)

(The inequality evidently applies, since we might be forced to

halve an interval.) A series of runs with Ato =2,1, 1/2, 1/4, and
1/8 was made in order to investigate this point (with €. kept at

3 x 10-4). It was found that all the variables appear to converge to
asymtotic values. Indeed, the deviations from those values were very

nearly linear with AtO:
=
x, (bt ) < x (0) [1 +a, Ato] all i (32)
Thus the error at time t is apparently
E(t) = La(e))at, , (33)

where <a> is the rms value of the ai's. (Only for At = 2 sec do

the relationships (32) and (33) begin to fail.) Since the values still
appear to be converging with Ato = 1/8, it appears that (a) the value
of Ato for which we get minimum error is much smaller than 1/8th sec,
and (b) Be_, which is independent of At , must be <<~6sn even for

At0 = 1/8 (unless the convergence errors are systematic). Moreover,
80% of the a's in eq. (32) are negative and (mostly) have the same sign

at t = 150 and at t = 300. A large sample of variables gave (for the

standard run) the following rms. values:

At t = 150 sec, <a> = Laf/n = 0.0145
i
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At t = 300 sec, {ay = 0.0168 (34)

For shorter times (@ is still smaller,

as expected. Thus a typical variable will
behave as shown in fig. 5. (The errors
are, of éourse, greatly exaggerated, in
the interests of clarity.) Thus a third
conclusion is that (c) the numerical error
are in fact systematic rather than
random--i.e. they are all in the same
direction--and therefore eq. (30b) must

be the correct expression.

Thus, we should be getting pretty

reliable answers, with Ato = 1/8. On
the other hand, the total computing time

roughly doubles, for each halving of

v

Ato. Since Ato = 2 seems to lead to
O (ignition) t
sufficient accuracy (final errors of 57%

or less), that has been chosen as the
Fig. 5. The values x(t) taken on by
a typical variable, as found by numerical default value.
calculations made with time increments
At of different magnitudes. The solid One final point: from the above,
cufve is the solution (which would be)
found with At, - 0. However, this we infer that
solution is still not exact, since
ec>0.

t
- — €
ne +\ﬁse fne TAt n .
n c n

n

E(t) § {)At

[the last (approximate) equality comes from eq. (31)]. Thus
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a &(%)L (At)z (35)

n

Although we would expect from this equation that {a(t))« t, whereas eq. (34) shows
that that is not quite the case, eq. (35) does show that use of the trapezoidal
rule for integration is not the principal source of numerical errors, since it
varies as (At)3.
7. Time required for a calculation

The time required evidently will depend on:
(a) the size of the problem (number of rooms, objects, vents, etc.),
(b) the complexity of the program,
(c) the speed and size of the machine,
(d) on a time-sharing system, how busy the machine is.
We use the "standard run" (SR) as a benchmark; this configuration is one room
with a doorway, and two objects in it. Object #1 is burning, with a growing fire; #2
a target which ignites at t = 310 sec. The time required for a 500-sec. SR with
Mark IV, on a PDP10, was about 7.5 to 8 min of CPU time.* This was reduced to
something of the order of 80 to 120 sec on the VAX 11/780. In fig. 6 the CPU time
1 required for runs of various lengths t is plotted. Curve A (marked "standard
run") corresponds to the case with version 4, before the switch to Gauss-Seidel
with damping, and where we switched directly over to NWIN when 100 iterations
of successive substitution did not yield convergence. As we can see, the CPU
time increased rapidly for t>280--roughly in synchrony with the exponentially
increasing tempo of the fire. There is no sharp knee in the curve, as we might
have expected upon target ignition at t~310.

Curve B shows the CPU time required for the same run, with the new

*
CPU = Central Processor Unit--the "heart" of the computer, excluding Input/
Output (I/0) time on the peripheral equipment.
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(damped Gauss-Seidel) algorithm, and with the cut-back in At whenever 35
G.S. iterations do not suffice for convergence, instead of the immediate switch
to NWIN. For t<260, the time required is a little bit greater, but it is smaller
thereafter; a 500-sec run takes about 25% less time than before, and for larger
t, the decrease is closer to 30%. The principal reason for this decrease is that
the present version of Gauss-Seidel is sufficiently robust, that the program never
has to resort to using NWIN, in a standard run.

The new VENT routine (see sections II and V) was introduced thereafter;
this made the program run a little slower: a 600-sec run with the old VNT
routine(s) took about 98 sec--about 20 sec less than with run L901l, whereas
the new VENT took 109 sec. However, many changes were made in the program in
order to produce Mark 5--changes which would generally be expected to slow down the
calculation. Still, a 600-sec standard run now takes only about 87 sec, as
seen from the curve marked Mark 5 in fig. 6. The increased speed is undoubtedly
due to the improved logical flow. The amount of time needed for a Gauss-Seidel
iteration cycle is approximately independent of the number of variables in
ICOR; for the Standard Run, it is 20.6=1.0 ms/iteration. (For a 500-sec run,
it averages 19.56 ms/iteration. The number of variables in ICOR varied between
24 and 45; the average for the run was about 39 or 40.) For a very similar
run where object 2 was prevented from igniting, the maximum number of variables
fell to 38, and the total time for the run indeed was shorter (9 seconds less);
however, the mean time per iteration was larger: 20.46 ms! One Newton iteration,
on the other hand, takes 1.0+.1 sec (it is proportional to N3-- see the dis-
cussion on p. 16 of reference 18). When a more complex subroutine is used--
e.g. ABSRB3 instead of ABSRB2-- the calculation time goes up, of course:
for a 400-sec run, the time per Gauss-Seidel iteration rose from 20.1 msec

to 24.9 ms.
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IV. The Program.

In this section we shall discuss the characteristics desirable in a
program, and the degree to whiéh we have achieved these goals with Mark 5.
Following that we shall describe the organization and working of the program,
largely in terms of structure and flow diagrams--first simple versions, then
more detailed ones. Then the way the data is organized, placed in arrays,
etc., is discussed. Any object, from the point of view of burning, exists
in one of several qualitatively distinct "states'. This categorization
is useful to make in the program, so that calculations which are relevant in
one state but not another, are carried out only in the former case. These are
described. Next, the logical flow for the numerical algorithms is
discussed. Then the COMMONS and their contents are given in detail; this
may be thought of as the other half of the data structure. Finally, the
input/output options available to the user are discussed.

We begin by considering what constitutes an ideal program, from our
point of view:

1. Desiderata. There are a number of features which would be desirable
in an ideal computer program. The principal ones, in order, might be:
A. It should have universal applicability: no matter how small or
large, how simple or complex the structure, a fire of any pre-
assigned kind should bé calculable. The fire could be in a
mine shaft, an airplane flying at 35,000 feet, a furnace, or
a house. The initial fire could be produced by a gas jet, a
pool of spilled gasoline, a smoldering fire, etc. And on any
material(s).
B. It should be easy to use, so that no special sophistication is

required from the user.
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C. It should be highly reliable; that is, always stable and
convergent, and accurate to any desired degree.

D. It should be flexible: we should be able to easily change any
desired aspect--a parameter, a convergence criterion, the
description of the physics of a subrpocess, etc. There should
also be alternative modes of input and output.

E. It should be machine-independent and easily transportable.

F. It should be written in a language that's universal, or nearly so--
this may be thought of as a corollary of item E, perhaps.

G. It should be transparent--that is, the logical flow should be
clear énd simple.

H. It should be modular: the program must be written in sections
which are independent,so that a change made to one section should
never mandate concomitant changes in any other section. In
particular, it should be possible to program components of the
physical model without any knowledge of the numerical solution
procedure. Modularity is a way to accomplish items D and G, also.

Let us consider these in turn. |
First, universality. At present, we are restricted to an enclosure which
is a rectangular parallelepiped, with one to five rectangular vents in the
walls, and one to five objects inside. The vents connect to the outside,
which is assumed to be windless. We only consider flaming fires, but these can
be a growing fire, a burner fire, and/or a pool fire. (Smoldering fires
and wall fires are not yet incorporated.)
Second, ease of use. In order to run the program, the user merely

types* "RUN MARK5" and thén follows the instructions which appear on the

* This instruction may not be entirely machine-independent, however: diff-
erent operating systems may have different conventions--the most likely being
the demand for the three-letter "extension' signigying the compiled and linked
program. Thus, for example, MARKS.EXE or MARK5.0UT might be required.
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terminal screen (this will be described in more detail in section VIII).
Input is requested from the user in simple formats, generally one item at a
time. If an input error is ma&e,rthere is generally at least one opportunity
to correct it. Input can also be made in blocks, when the information is
already there; thus, for example, if object #3 has the same physical
characteristics as object #1 (say), that can all be input with two keystrokes,
rather than a dozen. A card-input mode is also available. When all the
required input has been supplied, the program automatically begins the
computations.

Third, stability. The numerical algorithms we use still leave some-
thing to be desired: even though a wide class of problems will run through
with no trouble, numerical instabilities still occur from time to time--
perhaps 5-10% of the time.

Our experience so far has shown that most of the difficulties we've
had arise from inadvertent introduction of discontinuities in the variables,
in the "physical" subroutines. When successive substitution fails to give
convergence, the NWIN algorithm is able to overcome the numerical difficulties
some 80-90% of the time. Independent investigations (Ramsdell (27)) indicate
that when there is a difficulty with NWIN, it often lies with the Jacobian
matrix being ill-conditioned; this can be overcome (sometimes) by going
to double precision. That option is not available in this versionm,
however.

As indicated in the discussion in section III, we can generally expect
accuracy within a few percent, with €. = 3 x 10-4 and Ato = 2 sec.

Flexibility. As discussed in the second item above, the interactive
input is fairly flexible: it will forgive a wide class of errors and
permit the user to change the input. We can, moreover, choose At as well

as the length of the run, at run-time. In Mark 5, we cannot vary sc(TOLER),
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nor the initial value of the flame cone angle. But all the other
parameters--geometric and physical--can be chosen at run time, should they
differ from the default vaiues.

The user may choose what kind of fire he wants, as well as having a few
alternatives in the subroutines to be used. There are also two kinds of output
mode , illustrated in Appendix C: first, a long-form output, where (nearly)
every variable is displayed periodically (the period is user-chosen, with
10 seconds as the default value). Second, a short-form output, where only
8 variables are displayed; this is much more compact, taking only one line
vs. 19+ lines per printout. The 8 variables may be chosen by the user at
run time; if no special choice is made, the 8 variables which will be
displayed are TL = ZKLZZ (the layer temperature), TS = ZK0ZZ(2) (the sur-
face temperature of object #2), Tw = ZKWZZ (the wall/ceiling temperature),
hL = 7ZHLZZ (the layer depth, or thickness), y(0;) = ZYLOZ (the mass con-
centration of oxygen), &u = TMUZZ (the rate of hot gas mass outflow from
the room), -ﬁf = -TM0ZZ(1) (the rate of pyrolysis of the burning object),

and R. = ZRFZZ(1) (the radius of the initial fire). This is the "default"

f
selection.

Machine independence and language. These two are really quite closely
related. FORTRAN was chosen as the language to be used, because it has been
in nearly universal use for scientific work, so that all interested
institutions and probable end-users will have FORTRAN compilers. More-
over, other researchers can make contributions to this program via
FORTRAN-—written subroutines, and prepared numerical '"packages" can also
be used. Of course, different installations have somewhat different

compilers and operating systems, and may use different versions of

FORTRAN; we have written the program in as nearly machine-independent a
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form as was practicable within our time and resource constraints. Mark 5
is mostly in FORTRAN 77. As a result, the tapes have been successfully
read and compiled in a wide Qariety of places: the National Bureau of
Standards, the California Institute of Technology, in Sweden, in France,
etc. The introduction and widespread use of the ANSI '77 FORTRAN has
facilitated this task. A number of people have recommended the use of
PASCAL or other structured language instead of FORTRAN, as it permits
dynamic allocation of memory and data structures (such as records),
easier modularization, and generally better data handling. ADA (pushed
by the DOD) permits dynamic dimensioning, as well. However, neither of
these languages at present have the near-universality of FORTRAN, and hence
will not be adopted by us soon. (Not to speak of the onerous task of
rewriting large programs in the new language!)

Transparency and modularity.

Ideally, a program should be written in '"top~down'" fashion. However,
its authors are not programming experts, nor was such sophisticated expertise
available at affordable cost. Hence this program grew, like many such programs,
with a somewhat tangled structure. However, modularity was attempted from
the first, with some success.

Mark 5 represents a significant step in the desired directiomns, as
a result of substantial efforts made to simplify the structure of the program
and improve modularity. There is no point in going into detailed descrip-
tion of all the changes that were made from Mark 4, though it is not
amiss to mention a few of the present features: some 30-odd COMMON blocks
have been concantenated into 13. The logical flow is indeed simpler
and more "transparent'--i.e., easily grasped--than in Mark 4, and I shall

shortly describe it. Modularization has been improved by making the
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argument list in the subroutines as short as possible* (frequently con-
sisting of just one index); the needed variables are carried in COMMONs.
This makes COMMON link all the subroutines, so that they are not, in
fact, truly independent. The alternative would be to carry no COMMON,
and have each subroutine (and its CALL) carry the whole list of variables
involved. That has its own lack of appeal, of course.

We also have modularity in the numerics: the solution of the system
of equations (6) is now found by any one of a set of numerical subroutines
written for the purpose, at present including just JACB and NWTN (see

Section III).

2. Program Structure.

I shall describe the organization of the program in two ways: first,
the actual structure; that is, the placement and relationship of functional
units and routines in relation to each other. This anatomical skeleton
is vary useful for grasping the structure, and as an aid in following the
flow charts which follow. This description is static, however, and only
hints at function--the "physiology", to follow the organic analogy. The
dynamics is therefore presented in flow diagrams.

The elementary structure is shown in fig. 7; for the more ambitious
reader, it is shown in considerable detail in fig. 8. 1In the latter
figure, the functional blocks indicated in fig. 7 are filled in with
the appropriate subroutines and their interconmnections. Fig. 9, on the
other hand, gives the first--highly simplified--flow diagram, which

describes what the program does. Fig. 10 gives a more detailed-- but

*Sub-subroutines sometimes may have a few more arguments.
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still abbreviated--account of the program flows. Figs. 11-22 give the
detailed flows for most of tbe program.

The most fundamental division of the program is into three parts:
first, a set of subroutines which quantitatively describe all the relevant
phenomena--i.e., the physics. Second, a set of subroutines which give
one or more algorithms for the (numerical) solution of the resulting
equations. Third, the controlling programs which direct the flow of the

calculation.

CONTROL
I/0
/ Numerics:]
\\\\\\\\ Diagnostics
Interface
Data
Structure L
ucture p- —-=---- 1 Physics

Fig. 7. Basic structure of the Fire Code. The directions of control
are down along the indicated paths, except upon return. The
dashed line between the bottom two boxes indicates that the
subroutines which "do" the physics, also "know' something
about the data structure, both from including COMMONs, and
from (usually) having an array index in their calling argument.
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Block diagram for the program. The functional boxes shown
in fig. 7 have here been replaced by their constituent
subroutines. This may be compared with fig. 1 of CFC III

Also see Appendix 6.2 at the end of the section on COMMONS
in Chapter 1IV.
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At a just slightly more detailed level, we may note six functions; first:
numerical, physical, and controlling, just as described in the previous para-
graph. Besides these, an input/output (I/O) section, another which establishes
the data structure, and (finally) a set of interface programs which mediate between
the physics and the numerics. (There is also a ''diagnostic" subroutine, DEBUG,
which escapes categorization.) See fig. 7. The casual reader may now wish
to skip to fig. 9, and then to figs. 18a and b.

Except for ABSRB, all the physical subroutine names are four-letter com-
binations. Every subroutine name is of course meant to be suggestive of its
function. For the physical subroutines, the shortness of the names makes
recognition difficult; they are described in detail in section V, however, so
that should pose no problem. For a few of the others, the meaning may be

made clearer from the following short table:

Table I. Partial dictionary of subroutine names:

CALS = call subroutines

COPINP = copy input

DISP = display

MSLV = matrix solver

NWSTAT = new state(s)

SELSUB = select subroutine

SING = singular matrix detector
TIGN = time of ignition

WRIT@3 = short-form output

By convention each subroutine name represents a class of more-or-less
interchangeable subroutines which perform the same logical role in the program
operation. For example, CFCS‘contains ABSRB1 and ABSRB2 (one or the other
alternative is used in a calculation); they are both referred to by the
generic name ABSRB.

Before we can discuss the logical flow intelligently, we must understand
something about the naming and storage conventions for the variables. Thus,
we have:

3. Data Structure.

Within the physical subroutines, variables appear with names which
are alphanumeric labels whose meaning is given by the conventions detailed in
Appendix A, and listed in Appendix B. In the higher-level subroutines,

however, it is greatly advantageous to be able to work with an abstract

.
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array X instead of a collection of individual names. This enables us to
perform operations on the whole vector of physical variables at once by means
of Fortran DO loops.

The necessary correspondence between distinct names at one level and
abstract arrays at another is achieved by writing the different lists of
symbols in common block* /VAR/ in different ways: Within each of the physical
subroutines, /VAR/ appears with a list of all the physical variables in a
prescribed order. This is the current list:

COMMON /VAR/ TELZR(5) ,TELZD(S) ,ZMLZZ(5) ,TMLZZ(5),
ZELZZ(5) ,TELZZ(5) ,ZHLZZ(5) ,ZKLZZ(5),
ZYLOZ(5) ,ZYLOZ(5) ,ZYLMZ(5) ,ZYLSZ(5),
ZYLWZ(5) ,ZPRZZ(5) ,ZULZZ(5) ,RMFILL(25),
FQLOR(S) ,FQWOR(5) ,FQPOR(5) ,ZK0OZZ(5),
ZM0ZZ (5) ,TM0ZZ(5) ,TE0ZZ(5) ,ZHPZZ(5),
TMPZZ(5) ,TEPZZ(5) ,TMPLU(5) ,TEPZR(S5),
ZRFZZ(5) ,TPSI(5) ,0BFILL(130),
TEUZZ(5) ,TMUZZ(5) ,TMDZZ(5),
VTFILL(85),

FQLWR(5,2) ,FQPWR(5,2) ,FQLWD(5,2),
ZKWzZ(5,2) ,WLFILL(30,2)

Within each of the higher-level subroutines, /VAR/ appears with the

vector XIN occupying the same storage locatioms:
COMMON /VAR/ XIN(500)

We currently allow a maximum of 100 variables. These may be distributed
in various ways, however. Thus we might (in principle, at least) have five
rooms--corresponding, according to the discussion in section ITI, to
5 x 15 = 75 variables--one object, one vent, and one wall. Or, we might
have one room, five objects, one vent and one wall. Or one room, four
objects, five vents, and one wall. Etc. With an eye to possible expansion,
then, we make room for 100 variables indexed by ROOM, 200 for those indexed
by OBJECT, 100 for those indexed by VENT, and 100 for those indexed by
WALL. This yields the (quite sparse) array XIN, and its image in commons
VAR and OLDVAR. See the discussion for MAPS and for common /VAR/.

The sparse array XIN:is then mapped onto the (relatively densely packed)

array X via the subroutine MAPS. Then the numerical subroutines take X

*VAR is shorthand for ''variable'", here.
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(and, if necessary, the previous timestep values X@# and X@#@) to find the first
iteration value XK.

Although the organization of COMMONS is part of the data structure, they
are important enough to warrant their own subsection--see 6.

In the physical subroutines, no variable ever appears as an abstract
array element. In the control program MAIN and the numerical programs no variable
ever appears in the fire code notation. The same is now true of CALS, and CALS1,
the physical-subroutine-calling programs, although in Mark III and IV CALS
was an interface in which both forms of reference appeared.

Next, consider the logical flow. Start with fig. 9. The master program which
directs the flow of the calculation to the various subroutines is called MAIN,
and is shown in fig. 11 below.

There are a number of auxiliary control and interface subroutines:

EXTRAP, DELTAT, NUMER, RESETI, NWSTAT, TIGN, SELSUB, SETI, SETJ, INIT, MAPS,
INPUT3, DEBUG, WRIT, CALS, and CALS1l, of which the first five are called by
MAIN, and are schematized below, in figs. 12-16. TIGN is called by NWSTAT,
and is shown in fig. 17. Their functions are as follows:

EXTRAP provides the initial "guess" for the values xj at a new time
t + At; that is, it provides a predictor, and the numerics then supply the
corrector. The extrapolation is (essentially) quadratic for the Gauss-Seidel
mode (requiring, therefore, two previous timestep values, as well as the
current one), and linear in the NWIN mode (experience has shown that we do
rather better with linear extrapolation, in the latter case).

DELTAT calculates At for the next timestep. For example, if we have
been moving along with At,-sized steps, and an ignition occurs, then

we interpolate all values between t and t + At, to the value at t + §t,

the moment of ignition; the next timestep must then be At = Aty - 8t. Again,
we (generally) display results at multiples of 10 sec; if t < 10m while

t + Aty > 10m, again we must choose At < At,, such that t + At = 10m. And
so forth.

NUMER. Subroutine JACB is fast and good in the early stages of a
calculation; however, it will sometimes fail. Subroutine NWIN is more power-
ful, but ponderously slow. For the package to be reliable and efficient
the control must be flexible enough to pass from one of these methods to another

without disrupting the computation. This switching is handled by the control
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START
(£=0)

Physical

Initialize; subroutines

determine

the N '
variables Finds XK, values
of variables on
kth iteration

Y

NUMERICS
Solves the N No
simultaneous

eqs. at time t

XK1, new values
of variables
(k+ 1st iteration)

Decide: | Let t+t+At

<] Set

Write ouput
vector X on

disk file rS‘TOP—l

\

X@ + X¢o
X =+ X9
XK + X

Fig. 9. Highly simplified schematic (flow diagram) of the entire
program. Note that XK is the array of values of the (N)
variables in the current iteration cycle. XK1 is the set
of values in the next iteration, resulting from passing
XK through the physical subroutines (successive substi-
tution case--see text. The more complex case is not illus-
trated here; see Fig. 18b, instead). When we have converged,
XK is placed in X; the previous set of values in the array
X is placed in X@, corresponding to the "previous timestep",
and (similarly) X@ goes into X@@. NUMERICS does all the.
fancy work of extrapolating to get predictors, finding
appropriate mean values, interpolating, finding Jacobian

matrices, etc.




WE WANT TO
CONTINUE DESPITE
SMALL SIZE OF At?

CALL DEBUG DURING
THE RUN. OPTIONS
AVAILABLE FOR VARIOUS
OUTPUTS

NO

A

CAN WE CHOOSE A MORE
POWERFUL NUMERICAL
ALGORITHM?

IS THE NEW TIMESTEP

SMALLER THAN DESIRED

FOR THIS NUMERICAL
METHOD?

4

CUT TIMESTEP DOWN:
At + At/2
t+t - At/2

Fig. 10.

NO

START

t =0.
VARTABLES.

INITIALIZE
CHOOSE
FORM OF OUTPUT DESIRED

[INPUT RUN LENGTH1

)

DO WE WANT TO USE |
THE DEBUGGER?

YES

ARE WE PAST THE
TIME LIMIT?

y

A

DEBUG:

SET FLAGS FOR
VARIOUS OUTPUT OPTIONS
AND WHEN START

INCREMENT TIME:
t + At

DO NEW TIMESTEP
INITIALIZATIONS

2

NO

CALCULATE At
INCREMENT:
t+t + At

INTERPOLATE VARIABLES
TO TIME OF IGNITION.
RESET TIME + TIME

OF IGNITION

\
WRITE OUT TIME,
NUMERICAL METHOD,
AND OTHER INFO

ON TTY SCREEN

YES

v

TIMESTEP

EXTRAPOLATE TO FIND
FIRST ESTIMATE OF
VARIABLES FOR NEW

¥

CHOOSE PROPER

NUMERICAL ALGORITHM

OUTPUT VARIABLES IN
FORMAT CHOSEN BY USER

[E?S

A

IS THIS AN
APPROPRIATE TIME
TO OUTPUT INFOR-
MATION TO TTIY OR
TO DISK FILE?

NO

HAVE THERE BEEN
ANY IGNITIONS?

v

SUBROUTINES.

GO THROUGH PHYSICAL
FIND
NEW ITERATION VALUES

DETERMINE STATE
CHANGES OF OBJECTS,
IF ANY

A

0

l

WE HAVE CONVERGED TO
A SOLUTION

IS THERE STILL HOPE

THAT WE MAY CONVERGE

IN THIS METHOD WITH
THIS af?

ITERATIONS, Ax.
MAXIMUM OF Ax/x
IS THE NORM

Short version of the entire

SUBTRACT VALUES OF
CURRENT AND PREVIOUS

YES

IS |NORM| < TOLER AND
HAVE WE TAKEN ENOUGH

ITERATIONS?

program.

This is, effectively,

an expanded version of fig. 9 (also see Appendix D of ref.

a0\
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MAIN
Call RESETI(REMAP,...) to Store new solution (XK) in
—DATA BLOCK checl; wk;etk;ezh:es:}t\ogtd X(100), old oneaé? XG)(lOO),
recalcula one before in X@@(100).
variables in the system.
Call INIT 1f yes, call SETI(X,X@,X@@)
to initialize
Call NWSTAT(XK,ZTINPL) to
1 h check for state changes of
Input lengt Call WRIT (X,...) to objects (including ignitions).
of run, tmax' output to disk and/or If there have been ignitions,
to TTY, at intervals of set time to time of first
WRTTY and WRDSK seconds, ignition, then interpolate
respectively. values of all variables and
Call DEBUG(1,XK) place them in XX.
to set up options
yes
y
— Call NUMER(XK,ICONV,...)
:nt;:2;} ;:;:1:l;zations numerical control sub-

n -0 “at = At (;2 sec) Have we < routine. Returns whether
N:d ’ fous®flags converged? to change method, whether
and set var 8s. converged and, if not,

whether to halve At and
whether recalculate
! variables in the system.

Call MAPS:
VAR(500) -+ X@(100)

1 Call EXTRAP(XK,...) to get

first set of guesses XK

Initialize X(100)and for this timestep.

XK(100): copy from

X@(100)
Is At too
small? Output NT, time, At,
no and numerical method
Call SETIL(X,X@,X@@) to TTY, or STOP.
to set up map to yes
variables in the system
Activate debugger optioms
l?all DEBUG(ZXK)J*“—_—' wanted at this time, if
Begin main any. If one is to reask
timestep loop questions, call DEBUG.
Call CALS(XK,XK1)
1s with INEWT=1 for
t >t new timestep Time = time + At
max initializations in | NT = NT + 1
? the physical sub-
no routines
yes 4 Call DELTAT
Call MAPS: to calculate
X(100) -+ OLDVAR(500) appropriate At
sets up OLDVAR for f this timestep.
STOP this timestep o 2 2

Fig. 11. Flow diagram for MAIN, the principal flow-controlling program.
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MAIN: C(ALL EXTRAP

(XK, X,X9.X@@,C1,C10)

t
-ﬁa’k‘rj

FOR EACH
VARIABLE:
NT <5?

e |

DO NOT - 1S
EXTRAPOLATE |x00 - x¢]
FOR THIS VARIABLE
<1074?

\

YES

NO

4

CALL CALS(XK,XK1) LINEAR
WITH INEWT =2 / EXTRAPOLATION
TO CHECK THESE
EXTRAPOLATED
VALUES AGAINST QUADRATIC
PRESET LIMITS. EXTRAPOLATION
IF OUTSIDE THESE
BOUNDS, LET THE
VARIABLES DEFAULT
TO PREVIOUS
TIMESTEP VALUES.
CHECKED SET COPY:
BECOMES XK1(100) XK(100) <= XK1(100)

RETURN

Fig. 12. Flow diagram for EXTRAP, numerical subroutine auxiliary to
MAIN. It finds whether to use zeroth, first, or second-
order extrapolation in initial estimate of variables at a
new timestep, and then does it.
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NUMER (XK, DTINIT,
ICONV, MET1, HALVE,
REMAP)
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INITIALIZE OUTPUT FLAGS:
HALVE = .FALSE. (DO NOT HALVE TIME)
REMAP = .FALSE. (DO NOT RECOMPUTE VARIABLES

IN SYSTEM)

\ MET1 = -1 (CONTINUE WITH OLD METHOD)
X ICONV = ¢ (NOT CONVERGED
NUMER
METHOD = 1
METHOD = 0 CHOOSE PROPER CALL
CALL NUMERICAL METHOD, fm———— wusr (XK, ICONV)

JACB (XK, ICONV)

HAVE WE
CONVERGED
(ICONV=1)?

YES

IS
At < DTINIT

10

(=0.2)?

Y

SET MET1=2 FOR

SWITCH TO NWIN
METHOD

PASSED IN

COMMON/CONTRL/
, IS
TETHOD = 2 At > DTINIT
4
CALL (=0.5)7
NWIN(XK, ICONV)
NO
HAVE WE
CONVERGED? SET MET1=0
(ICONV=1) FOR SWITCH TO
JACB METHOD

YES

HAVE WE
CONVERGED?
(ICONV=1?)

SET MET1=1 FOR

SWITCH TO NWSF YES

METHOD
SET MET1=2 FOR
SWITCH TO NWIN
METHOD
SET HALVE=.TRUE.
FOR HALVING At ,
SET
REMAP = .TRUE.
FOR RECOMPUTING

VARIABLES IN THE
ReTURN P SYSTEM. |

Fig. 13. Flow diagram for NUMER, subroutine auxiliary to MAIN. NUMER
decides which numerical method to use.
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subroutine NUMER (called by MAIN). It determines which numerical procedure
to use next; it sets a number of flags as well, which will subsequently

tell the program whether or not to cut At in two and whether or not to reset
ICOR. Both NWIN and JACB have ICONV as one of their calling arguments;
ICONV is a flag which 1s set to 1 on exit if a converged solution has been
found and to @ otherwise. The flow between NWIN and JACB is detailed in
section III.

SELSUB. The user may wish to choose a physical subroutine different
from those in the default package (when alternatives are available). He does
this at run-time,and the information is organized into the array IVRSN(20),
in SELSUB; this is subsequently used in CALS (see section 6: COMMOﬁS,
for a description of IVRSN).

Finally, RESETI determines whether the set of variables "in the system"
(that is, those belonging in ICOR) should be recalculated at any time. In
fact, ICOR should be recomputed if (a) a physical quantity changes from
being apparently a constant, to a variable. Or vice-versa, a variable
ceases to vary, and appears to become constant. Or a variable becomes so
small as to be physically insignificant (in which case it ought no longer
to be carried along). Or, if a physically negligible variable grows to a
meaningful size. A quantity will be said to be "constant" if its value changes
by less than its VMIN value, from one timestep to the next. Similarly,
it will be considered insignificant if its wvalue is less than its VMIN
value.

We also recompute ICOR when (b) DTSCAL seconds have passed since the last
recomputation, and (c) on the first 10 timesteps of the program.

4. Physical States.

Consider one of the combustible objects in the room. At some time

into the fire it may in fact ignite, either through autoignition, piloted
ignition, or contact. From that moment forward, it is no longer necessary

to continue calculating its surface temperature: it will stay at (essentially)
a constant temperature (roughly Tig)' On the other hand, we must calculate
its burning rate thereafter, the fireplume it develops, and so forth. The
simplest way to carry this kind of information in the program is to associate
an index with each object, ISTAT(KO), which specifies what state it's in.

These states are listed in Table II.
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Table II. The states an object can be in.*

When ISTAT is . Object is
1 cold (not involved)
2 heating, but not pyrolyzing
3 pyrolyzing, but not burning
4 smoldering
5 flaming
5a a growing fire
5b a pool fire or ignited fire
5¢c a gas burner
6 -
7 —
8 burning charcoal
9 extinguished
10 consumed--i.e., burned out

This brings us to subroutines TIGN and NWSTAT. TIGN (called by
NWSTAT) introduces the criteria for ignition used here: attainment of the
autoignition temperature Tig, or physical contact with a flame. When ignition
to flaming occurs, ISTAT for that object is changed (from 1-4 or 9) to 5
(5b for autoignition, 5a for contact ignition), and the time at which ignition
occurred, TCHNG, is calculated by a simple linear interpolation. The other
state change we have included is burnout. This is here defined as having
the (burning) mass fall to 1 mg or less. When this happens, the state of the
object is changed from ISTAT=5 to 10, and the moment of burnout found by
interpolation. TIGN is schematized in fig. 17.

Subroutine NWSTAT (called by MAIN) orders temporally the state changes
(if any) occurring in a calculated interval, prints out the information, and

finds the values of all the physical variables at the earliest of the

® This Iist deviates a little from the one on p. 7 of reference 28, and
supersedes it (in the program, this list is found in TIGN). In the present
version (Mark 5), only the indices 1, 2, 5, and 10 are used. The sub-
categories under "flaming fire'" are flagged by the index KFTYP (for "flame
type"), which takes on the values 1, 2, and 3, corresponding to 5a, b, and
c, respectively.



MAIN: CALL DELTAT

(DT1,DTINIT,DTOLD, =

IIGNT,IOUT, TCONV)

NO

y

HAS
AT BEEN CUT
DOWN, BECAUSE OF
AN IGNITION ONE
TIMESTEP BACK
(IIGNT = 0)
OR FOR OUTPUT
(IOUTP =1)?

NO

CUT BELOW DTINIT (AT,)

IF TIMESTEP
NT IS A MULTIPLE

OF 14, AND

TIMESTEP WAS

FOR CONVERGENCE,
DOUBLE AT
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= DELTAT

DID
AN IGNITION
JUST OCCUR

(IIGNT = 1)?

YES

Fig. 14.
MAIN.

SET AT TO PREVIOUS,

STORED AT VALUE
(IN DTOLD)
SET FLAGS
TIGNT = -1,
IOUTP = 0,
TO SIGNIFY
RESTORATION

YES

\

SET DT1, NEW
AT, SO AS TO
RECONVERGE AT
THE TIME AT
WHICH WE HAD
PREVIOUSLY
CONVERGED, TCONV

SET FILAG

WILL
THE CURRENT
AT TAKE US
PAST DISK OR
TTY OUTPUT
TIMES?

NO

YES

> TIGNT = 0

RETURN

RESET DT1 TO
EARLIER OUTPUT
TIME. STORE OLD

AT IN DTOLD.
SET IOUTP =1

‘ RETURNi

Flow diagram for DELTAT, numerical subroutine auxiliary to
It finds what value of At to use at any step.
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MAIN: Call RESETI(X,X@,REMAP,TSCL,DTSCL)

{
|

1
Y

RESETI

4

Set REMAP (an output flag)
to .FALSE. This implies
that no new calculation of
ICOR (no. of variables in
the system) is needed.

If we are calling

for remapping, set
TSCAL=time+DTSCAL,
i.e., t+20 seconds.

le———————| time, defined below) reset

Has any variable x, whose previous
timestep value X# was less than
VMIN, grown bigger than VMIN at this
timestep? If yes, recompute which
variables are in the system: set
REMAP to .TRUE.

l

For first ten timesteps,
or if t > TSCL (remapping

REMAP to .TRUE.

RETURN

Fig. 15. Flow diagram for RESETI, subroutine auxiliary to MAIN.

Fig. 17. Flow diagram for TIGN, control subroutine auxiliary to MAIN.

NWSTAT: call TIGN - - -~

Was ISTAT(KO),

the previous
state, =107

no

Find time of state
change (interpolate).
time -+ TCHNG1l

Subroutine Is the mass of the
TIGN(KO, ISTAT1,TCHNG1) object < 1 mg?
yes no
Set
ISTAT1=10
(burned out) Set ISTAT1=ISTAT(KO),

the old state.

Is the object temp.
now higher than the
ignition temp?

Was the
object flaming? (i.e.,
is ISTAT1 > 57

no
\\L yes
RETURN
RETURN Leave state
unchanged
Set

ISTAT1 = 5
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MAIN: call NWSTAT

¥
. v Call MAPS: Set ICOUNT=@
Sub [$3
NWS;A;?;K ;;INPI) place XK(NVAR) into > Counts no. of state
2 : VAR(500) for later changes at tnis

’///,/' checking of ISTATS timestep.
[f there are no

objects, RETURN Call

TIGN(KO, ISTAT1(KO) , TCHANG1(KO))

to give current state of object

and, if the state has changed, RETURN

the (interpclated) time of the
state change.

Has
the state
changed?

yes

ICOUNT + ICOUNT + 1 7

X Set ZTINPL, inter-

es _44KO»K0+1’ polated state change

Set up pointer time,= -1. As a

to object whose Are there

flag (to be used
n
tate has changed. more objects to .
stare £ be checked? in MAIN)
Were there
Reorde; ObjECtse:h°i: < ves any state changes? Copy new state
s;ate das Cfang i; intere (ICOUNT>1?) of object into
the order of the common /OBJECT/

polated ignition times. \\\\.

Set INTERP=§ !
(interpolation flag)

Also set I=l, Was this
write out info. on the state change an
Ith state change to 6//,// ignition?
TTY and disk. Account for no. of

lines used by message yes
in short form output.

Write ignition message
Are to disk and TTY. Again

r?:E:Ij (To1el no we calling éccount for lines used
, ho for interpolation? in short form output.
(i.e., is INTERP=1?) ‘
Is es I Set
I > ICOUNT? w INTERP=1
(checked all yfs

changes?) J
Is § Set ignition time
this the (tjg=ZTIG) to time
g
Do not interpolate last state change? of state change
each separately (i.e., is I=ICOUNT?) + CHANGE(I)
1 n
°c yes
Compute time Interpolate
until next variables in
yes state change Set time of XK to ZTINPL
1s interpolation,
ZTINPL, to time of i
this time ;
<10 ms? no last state change. RETURN

Fig. 16. Flow diagram for NWSTAT, control subroutine auxiliary to MAIN.
This subroutine, called by MAIN, finds whether the state of any
object has changed in a given timestep; if this has happened,

the nature of the change is noted, appropriate flags set, and
the time at which this happened, found.
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state-change time(s) by linear interpolation. As discussed earlier,'we then
recalculate the solution at time t+At with the object in the altered state,
by starting with the interpolated values at t+dt, and taking a timestep of size
S§t” such that §t+St=At. NWSTAT is schematized in fig. 16. _

CALS (called by MAIN, EXTRAP, JACB, and NWIN) is a simple controlling
routine which calls the various physical subroutines. It does so in a pre-
arranged order (which can be changed by changing the DATA statement for the
array IORDER in CALS). CALS starts with the (linear) array of variables XK,
and finds the next iteration values XK1 (this notation was of course suggested
by }?k and ;k+l) .
5. Numerical algorithms:There are N variables involved in a given run (N<100).
A block of space of size N, called JCOR, is then set aside in memory. N is
called NVAR in the program. Some of these variables may not vary at all, but
be constant; some others may be zero or (effectively) vanishingly small. There
is no point in trying to get these to '"converge'; moreover, computation time
increases not linearly with the number of variables n in the numerical system,
but in some places in proportion to n2 or n3 (when NWIN is involved). As a
result it is highly important that the number of variables in the active system
be kept to a minimum. Hence the above-mentioned variables are excluded from the
Newton calculation, as well. The remaining subset of (significant) variables
is placed in ICOR. ICOR shows which position in the system corresponds to
which variable stored in the complete sequence of physical variables in common
block /VAR/: for example, if ICOR(1)=1 and ICOR(2)=4, then variable 1 and
4 are in the numerical system but variables 2 and 3 have been excluded. Now
suppose we have one vent and two objects in the room. Then from eq. (1),
N=54. Suppose that ICOR has 40 variables in it, at some point in the cal-
culation. The numerical procedures involved in the successive-substitution
and Newton modes are schematized in figs. 18a and 18b.

The flow diagrams for the numerical subroutines are given in greater detail
in figs. 20 and 21. Then figs. 22-24 outline the interface routines SETI,
SETJ, AND MAPS. Subroutine SETJ (called by INIT) is a generalized JCOR-
initializing routine. SETI (called by MAIN) sets up ICOR--that is, the set of
variables "in the system'"--those to be used in the Jacobian and to be checked
for convergence. Note that JCOR and ICOR appear in COMMON /MAP/. Various point
and arrays are set up by SETI and SETJ.

Subroutine MAPS (called by MAIN, DEBUG, WRIT, and CALS) takes a sparse
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Enter XK - Physical XK1
first 1 (54) subroutines (54)
guess l
14
no I
\ Have et — 40
we
converged? L
(40) yes
T~
XK1 » XK
Return [ (54)

Fig. 18a. Schematic flow diagram for the numerical procedures in the
successive substitution mode(s). The numbers in parentheses represent
the number of variables involved (see the text).

array of variables such as XIN or VAR and maps it onto a more concentrated
(and more economical) array, such as X. Generally, XIN+X and XOLD»X@. It
also does the inverse, depending on the index ICTRL with which it is called.
These mappings are achieved via the array JCOR. See fig. 19.

6. COMMONS and other arrays.

This section is based on one written by Barry London. There is some
overlap between the descriptions given here, and the previous text. However,
some redundancy is probably a virtue, in so complex a program . Note that this
is also part of the data structure.

In CFC V, much of the communication between subroutines is done using common
blocks. Here, we will give a brief description of the structure and furction
of.each of these common blocks, and list the variables found in each.

1) VAR:

Common VAR (for "variable") contains the set of physical variables
calculated by the program. This common has enough space for 500 variables:
the first 100 spaces are reserved for room variables, the next 200 spaces
for object variables, the next 100 spaces for vent variables, and the last
100 spaces for wall variables. Most variables are indexed to room (KR), object
(KO), vent (KV), or wall (KW). See section III.1 for details. Hence they
must be DIMENSIONED to the maximum number that can be input; these maxima are
MR, MO, MV, and MW, respectively. These are all (still) given the arbitrary
value 5 (in BLOCK DATA, following MAIN in the program). MR=5, however, is
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Enter | XK Physical XK1
first (54) subroutines (54)
guess l
‘\\\\\ Throw away the < 14
14 XK1's; replace - -\
with XK's / 40
Throw away Have we
Ezzigcs the 40 XKl's;|. mo converged?
g———1
(add AX replace with (40) L
etc.) ' XK's yes\’_-._t
v T Return |e XK1-+XK
Physical (54)
subroutines

Fig. 18b. Schematic flow diagram for NWIN mode. Note that much of it is
similar to 18a.

a fiction: as a practical matter, we can only run one room at a time, with
Mark 5. To run more than one room would require considerable programming
modifications. Walls are dimensioned to (MW,2) to account for their two sides.
There are currently 15 room variables, 14 object variables, 3 vent variables,
and 4 x 2 = 8 wall variables (see section III.1). The remaining space at the
end of each section is filled by the array RMFILL(25), OBFILL(130), VTFILL(85),
and WLFILL(30,2), respectively.

The starting address of each section mentioned above is given in the array
OFFSET(4), in subroutine SETJ and also in LOOKUP. The number of each type
of variable is given in the array INVAR(4), also in subroutine SETJ.

The higher level control subroutines deal with all of the physical subroutir
as a block. For these cases, all variables of VAR are referenced by the array
XIN(500).

The variables of VAR are all initialized in the subroutine INIT. The commor
VAR is present as explicitly named variables in INIT, the long form output
routine WRIT, and in all of the physical subroutines. It is present as
XIN(500) in the numerical and interface subroutines.

Common VAR is a working common: it is used for several purposes during
each iteration (e.g. computation of each column of the Jacobian matrix, checking

for convergence, and output, if desired). VAR may or may not change during an
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/

XIN(500) X JCOR > | X(100)

L

X

Fig. 19. Schematic of MAPS. The mapping is shown from XIN to X (corresponding
to ICTRL=0), but it is in fact a one-to-one mapping between any of the large,
sparse arrays, and any of the more compact arrays; hence the arrows can also

go in the other direction (for ICTRL=1). Note that XIN is isomorphic with

VAR, and that N is shorthand for NVAR.

iteration cycle; see appendix 6.2 at the end of this subsection. Previous
iteration values are stored in the array XK(100), in MAIN.

The following is a list of variables as they appear in CFC V, in commons
VAR, OLDVAR, NEWVAR, VARl, NEWVAR1, and in the long form output. The order in
this list corresponds to reading the output table in rows. However, the two
items preceded by an asterisk, do not appear on the output list. The meaning
of each symbol is given in the Dictionary, in Appendix B.

TELZR(KR) , TELZD(KR), ZMLZZ(KR), TMLZZ(KR), ZELZZ(KR), TELZZ(KR), ZHLZZ(KR),
ZKLZZ(KR), ZYLOZ(KR), ZYLDZ(KR), ZYLMZ(KR), ZYLSZ(KR), ZYLWZ(KR), ZPRZZ(KR),
*ZULZZ (KR), RMFILL(ZS)f FQLOR(KO) , FQWOR(KO), FQPOR(KO), ZKOZZ(KO), ZMOZZ(KO),
TMOZZ (KO) , TEOZZ(KO), ZHPZZ(KO), TMPZZ(KO), TEPZZ(KO), *TMPLU(KO), TEPZR(KO),
ZRFZZ(KO) , TPSI(KO), OBFILL(130); TEUZZ(KV), TMUZZ(KV), TMDZZ(KV), VIFILL(85)}
FQLWR(KW,J), FQPWR(KW.J). FQLWD(KW,J), ZKWZZ(KW,J), WLFILL(30,2). RMFILL,
OBFILL, VTFILL, and WLFILL are (room, object, vent, wall) filler "variables"
to expand the room,... section of common VAR to 100, 200, 100, and 100 words,
respectively.

2) OLDVAR:

This common gives the (converged) values of those physical variables
which were computed and stored in common VAR at the previous timestep. When
present as explicitly named variables, the variable names are identical to
the names in VAR, except that they end with the letter 'P' (for "previous").
Otherwise, it is present as the array XINOLD(500).

This common is reset once each timestep by MAIN, and remains unchanged

during the entire timestep. The use and distribution of the two forms of common
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MAIN: call JACB

Sﬁbroutine Initialize: Iteration
JACB (XK, ICONV) IT=@, number of loop l

iterations
ICONV=@, not
converged 4
.E_II-_-?-—f If DEBUG flag ITER is
a CALS(XK,XK1); this set to 1, call WRIT to
calls the physical subroutines. IT+IT+1}e output each iteration.
Variable values+XK1+VAR

y

Call CONV (XK, XK1,F, NCONV)
to check for convergence.
Returns NCONV=1 if

converged. Damping factor of 1/2:
XK(NVAR) « (XK + XK1)
2
Copy ¢ / /

XK(NVAR) + XK1(NVAR)

We insist on
five iterations:
Is IT < 5?

no

¢

For first 10 timesteps
we require 20 iterations: yes
Is NT < 10 and IT < 207

|_— yes

Have we
converged?
NCQ5V=1

.

Set flag for

convergence: Try again if
ICONV = 1 fewer than 35 yes
iterations have
l been taken:
IT < 357 no
Write out, to Write out, to
TTY, number of TTY, number of
iterations (IT) iterations and
we needed to \ RETURN message about
converge. non-convergence.

Fig. 20. Flow diagram for the numerical subroutine JACB. It implements
the Gauss-Seidel version of successive substitution; given the
array XK, it finds XK1.
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MAIN: call NWIN

Initialize: Initialize pointers
Subroutine IT=@, number of to ICOR, variables
NWTN(ICTRL, XK, ICONV) iterations "in the system"
ICONV=@, not
X converged
Iteration
loop < no Is ICTRL=2[Newton method:
____p;\\\\\q Recompute internal ves NWIN]? (as distinct from
scale factors for < Newton super fast: NWSF)
each variable in the
system. Scale
factor=|variable|,
down to 10 10 Call CONV(XK,XK1,F,NCONV)
to check convergence status.
Note that F is XK1-XK for
If DEBUG flag "ITER" is all variables in the system.
set to one, call WRIT to
output each iteration \\\‘ ,;’
Call CALS1(XK,XK1l); this b
calls the physical sub-
routines. New values Is NCONV = -1,
If NCONV = -2, of variables go into FNORMs diverging?
halving At further XK1(NVAR) . nd ves

appears useless.

Call DEBUG(2,XK) *\po\ /
' Is NCONV = 1,

Print out non-
ye (FNORMs converged?) |- convergence
p message
If NCONV = -2, Set
or NCONV predicts ICONV = 1 Copy: \
convergence after XK+XK1
too many iterations, ! / RETURN
set NCONV = § i.e.
no prediction made. Write out "IT",
number of iterations
needed to converge. yes Are we
IT » IT + 1 / in NWTN method
(rather than
Is NCONV=@, (no con- NWSF) ?
vergence soon), and no
are we past the no.
XK(I)+XK(I)-H(I) of iterations we'll
for each variable allow for this method? no yes
in the system. :

gcﬁizcigzx e— | Calculate and scale down
Jacobian matrix by incre-
¢ menting Xi by 0.1% and
Scale up H(I), the calling CALS for each
calculated AXK for Call MSLV(H,...) variable in the system
each variable in matrix-solving and calculating a new
the system package column from each.

Fig. 21. Flow diagram for the numerical subroutines NWTN and NWSF. Given
the array XK, they find the array XK1 using a multivariate version
of Newton-Raphson.
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INIT: CALL SETJ

T
l Calculate NVAR, maximum

y number of variables for
Subroutine SETJ this run. NVAR is in
common /MAP/.

|

Set up map from variables Set up pointer IPTR(i,j) in

in JCOR to common /VAR/: *______DJBLK, to top and bottom of JCOR

ICOUNT = ¢ and ICOR. JCOR has length NVAR;
initial length of ICOR = 1.

ave we gone
through all rooms

(objects, vents,
walls)?

Have we gone through
YES of all variables of that
type (e.g. all those
indexed by KR)?

Go to NO
4 next one
NO
YES Go to
next one
Have we ,
ICOUNT+ICOUNT+1 gone through all NO

ariable types?

y

MAP: JBLK(ICOUNT)=offset in
VAR for this variable type
+ ((no. of previous varidbles

of its type) x (space saved
in /VAR/ for each variable Return

of this type))+no. of element

Fig. 22. Flow diagram for the interface (data structure) subroutine SETJ.
This subroutine finds the maximum number of variables needed
in a run, then sets up JCOR and maps it into VAR.
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MAIN: CALL SETI

Subroutine SETI(X,X@,X@d@d)

J = 0 and
INUM = IPTR(2,1)-1
(just below

bottom of ICOR)

J=1+1J

INSYS(j) =0
Default not

Is J > NVAR?

es
no y

|

[INSYSP(j)-INSYS(j);

Has the variable in system
been absolutely
constant for the
last two timesteps?

yes

no
no

INSYS(J) = ¢
INUM = INUM + 1

4

JBLK(INUM) = J(position in JCOR)
(INUM is the position in ICOR)

RETURN

Records whether
variable j (of JCOR)
was in system the
last time SETI was
called.

Define
IPTR(2,2)=INUM
(top of ICOR)

y

Print out variable lists
(in system, etc.), if
option is desired

y
Write out number
of variables

in ICOR

Fig. 23. Flow diagram for the interface subroutine SETI (part of data
structure). This subroutine sets up ICOR, and maps it into

JCOR and JBLK.
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OLDVAR is otherwise identical to that of the two forms of common VAR.

3) NEWVAR:

NWTN uses common NEWVAR to compute the Jacobian matrix without dis-

turbing VAR. When present as explicitly named variables, the variable

names are identical to the names in VAR, except that they end with "1'"--
thus, TEOZZ in VAR becomes TEOZZ1l in NEWVAR.

4) CONTRL:

Common CONTRL includes those important control variables needed by

most of the subroutines. It is used in all the physical subroutines, and

most of the other routines as well. Its variables are, however, modified

only in MAIN.

ZTZZZ
DT

NT

IT

NIT
IBATCH

INEWT

METHOD

Variables:

The current time in the run (in seconds)
The current timestep, At (in seconds)
The number of the current timestep
The current number of iterations taken at this timestep
Total number of iterations taken in the calculation, so far
Index which determines whether we are in batch or interactive
mode:
IBATCH = § ==> interactive mode
IBATCH = 1 ==> batch (card-reading) mode
Index for type of calculation which physical subroutines

should do:
INEWT = @ ==> make normal calculation
INEWT = 1 ==>make new timestep initializations. Check

for oxygen starvation; compute the new temp-
erature profile for TMPW and TMPO; take the
just-calculated value to be the value to which
we add the appropriate new increment (to be

found), to find the new integral value.

INEWT = 2 ==> For the zeroth iteration at the new time-
step, skip calculations--just check the
adequacy of the values found by EXTRAP--
are they within reasonable physical bounds?

Index for numerical method currently in use

METHOD = @ ==> Gauss-Seidel (G.S.)
METHOD = 1 ==> Newton Super Fast (NWSF)

METHOD = 2 ==> Newton (NWTN)
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IVRSN(1) Index which selects the version of the ith physical
subroutine which is user-selected at run-time.

1<20, but at present is limited to two:

If IVRSN(1) = 1, TMPO@1l will be used
" (1) = 2, TMPO@2 " "o
" (2) =1, ABSRB1 " "o
" (2) = 2, ABSBV2 " ren
" (2) = 3, ABSRB3 " "o
ZTSTOP Time at which run terminates.
DTINIT Size of the initial timestep and maximum size of all

following timesteps.

IOUTP A flag telling whether the timestep has been cut down

for output.

1 ==> DT was cut for output

0 ==> DT was not cut for output

IIGNT A flag giving the status of the most recent ignition.

1 ==> An ignition has just occurred and we have inter-
polated the time back to the time of
ignition

0 ==> An ignition occurred in the previous timestep
and we have now reconverged at the time-
step we had originally reached

-1 ==> No ignitions have occurred in the recent past.

TCONV The time at which to reconverge assuming an ignition has
occurred.
DTOLD Stores the value of DT should it be temporarily modified

for output or ignition.

4) 1I0:

Common IO includes those parameters which control input and output
in the program. This common must be included in any subroutine which
inputs or outputs information. Common IO is most often used in the
control, interface, and input/output routines, but is also used in
certain numerical and physical subroutines. Its parameters are initialized
in the data block.

Parameters:
IRTTY Number of the device on the computer used when reading
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information to the terminal (currently 5)
IWTTY Number of the device on the computer used when writing
(outputing) information to the terminal (currently 6)
IRDSK Number of the device on the computer used when reading
(from a disk file) the files linked during this run
of the program (currently 21)
IWDSK Number of the device on the computer used when writing
(outputing) information to a disk file (currently 19)
WRTTY Data from the run of the program is output to the terminal
every WRTTY seconds

WRDSK Data from the run is output to the disk file every WRDSK
seconds
ISPOUT Index controlling output format

@ ==> Long form (table) output to the terminal and
to the disk file

1 ==> Short form (column) output to the disk file, long
form (table) output to the terminal

Subroutine
MAPS (ICTRL,XBIG,X) Is
ICTRL=1? Ses MAP: X + XBIG
r
MAP: XBIG + X no XBIG(R) = X(S)
4 ¥
X(P) = XBIG(Q) "Leaving MAPS"

message printed,
if so instructed
by DEBUG

RETURN [@—

Fig. 24. Flow diagram for the interface subroutine MAPS (part of the

data structure). MAPS is called by MAIN, DEBUG, WRIT, CALS, and/or NWSTAT.
XBIG is any of the large (dimension=500) arrays, such as VAR, OLDVAR, etc. X
is any of the small (D=100) arrays, such as X, X@, etc. P = number of each
variable in JCOR. Q = its location in /VAR/. R = location of each variable
in /VAR/ that is in JCOR. S = its location in JCOR.



IFNOUT

LINES

5) MAP:

-7

Index to suppress convergence data printed to the terminal
when in Newton's method mode (suppresses the FNORMS).
@ ==> Print the information
1 ==> Suppress the information

Gives the count of the number of lines in the short form
output in order to insure < 55 lines per page of output

for proper page skipping.

Common MAP includes those arrays used in the mappings between the

maximum possible set of physical variables, as given in common VAR (500

as of now), the set which actually exists in any one run (54 in a

"standard" run, for one room with one wall, one vent, and two objects),

and the set of variables in the system, to be checked for convergence

(usually 40 or less, in the standard).

This common is used in the control routines, in the interface

subroutines, in the numerical subroutines, and in certain Input/Output

routines.
Arrays:
NVAR

IPTR(2,2)

JBLK(600)

It never appears in the physical subroutines.

The number of physical variables existing in a given run
(the length of JCOR)

Index listing the positions of the bottom and top of
JCOR and ICOR inside the array JBLK (see below)
(1,1) ==> Position of bottom of JCOR
(1,2) ==> Position of top of JCOR
(2,1) ==> Position of bottom of ICOR
(2,2) ==> Position of top of ICOR

Includes arrays JCOR and ICOR, with ICOR located above
JCOR in JBLK.

JCOR points to the set of variables in VAR which are
actually defined for any one run. For example, while
we allow for up to 20 room variables, and up to 5
rooms, we have only 15 room variables and only 1
room in the standard run. Thus, the 100 possible
variables collapse into 15. The first 15 spots of
JBLK point to those 15 variables.

ICOR lies above JCOR, and points down to some of the
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variables in JCOR. Certain of the physical
variqbles_are negligibly small; others are
constant; still others are dependent, and are
used for no further calculations. We wish
to exclude all these from the numerical packages.
ICOR poiﬂts to those variables in JCOR which have not
been thus excluded. It is updated quite often during
a run.

VMIN(500) VMIN is structured parallel to common VAR; it defines
the minimum significant change for each of the physical
variables. It is used in the creation of ICOR, as
described above. The values of VMIN are given at the
end of DATA BLOCK.

6) DBUG:
Common DBUG includes those flags which control the options of the
debugging subroutines, and such auxiliary arrays as are necessary for
the routine. When activated, the debugger gives the user added flexibility
while running the program, so as to track down problems which may arise.
This common is used in the control, numerical and interface sub-
routines. It is also used in INIT and in one physical subroutine.

Flags and parameters:

INSYS(100) An array "parallel" to JCOR. Its elements equal 1 if
an element of JCOR is in the system (i.e., is in ICOR),
and equal @ if it is not. This array is useful when
listing the variables in the system, and the variables
entering and leaving the system.

INSYSP(100) Similar to INSYS, except that it gives those elements in
the system at the previous calculation of ICOR

ITER Index which determines whether every iteration should be
output: if debugger is activated (NDBG = 1)
@ ==> No output each iteration

1 ==> Output each iteration

TBGASK Time at which to reask the debug questions, if that option
is chosen
LISTS Index for output of a list of the variables in ICOR (in

the system), if debugger is activated (NDBG = 1)

@ ==> No list output
1 ==> Qutput list, each time it is recomputed
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LISTEL Index for output of a list of the variables entering and
leaving the system, if the debugger is activated (NDBG=1)
@ ==> No lists output
1 ==> Qutput lists, each time they are recomputed
NDBG Main control index for debugger
@ ==> Debugger not now activated
1 ==> Debugger is activated. Do all options requested
by the user.
IHELP Index to inform control routines that user is in trouble
@ ==> No trouble
1 ==> Trouble. Trip debugger.
LEAVE Index to print out message after leaving a subroutine,
if debugger is activated (NDBG = 1)
@ ==> No "leaving'" messages
1 ==> "Leaving' messages printed
BUGT Time at which debugger is to be activated
TTTY Output interval to terminal (in seconds) to be in effect
after the debugger is activated
TDSK Output interval to disk file (in seconds) to be in effect

after the debugger is activated.

7) NUMERC:
Common NUMERC includes those arrays and matrices needed in the

Newton-Raphson numerical routines. It is used exclusively for the numerical

subroutines.

Arrays:

XJCB(60,60) Contains the Jacobian matrix

UL(60,60) Contains the decomposed Jacobian matrix
IPS(100) Contains the pivoting matrix

SCALE(100) Contains the scale factors which normalize the variable array
in ICOR

8) POINTR:

Common POINTR contains the set of pointers and parameters which
describes the setup of the building chosen by the user. The pointers
and indices are set up in the input routines, and used in the output,
interface, and physical subroutines. Default values for these indices

are given in the DATA BLOCK.
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Note that the order of the elements MR, MO, MV, MW, and of the
elements NR, NO, NV, NW may not be changed lightly. The present order
is required by subroutine SETJ.

Indices:

MR, MO,

MV, MW Maximum values that can be input--see VAR, above

NR, NO,

NV, NW Number of rooms, objects, vents, and walls input by the
user for a given run

KRO(KO) Correspondence pointer giving the room number KR in which

v object KO is located

KNO(KR) Correspondence pointer giving the number of objects found
in room KR

KNOS(KR) Correspondence pointer giving the total number of objects

found in rooms 1 to (KR-1)

KRV(KV,JS) Correspondence pointer giving the room number KR in which
vent KV, side JS, is located

KRW(KW,JS) Correspondence pointer giving the room number KR in which
wall KW, side JS, is located

9) CONST:

Common CONST includes those physical quantities which are indeed
constant (i.e. the same regardless of the room, object, vent, and wall
in which they are used). As such, its components are unindexed, and
include mostly constants of nature.

This common is used in the physical and input subroutines, ex-
clusively. It is initialized in the DATA BLOCK.

Constants: G, SIGMA, PI, CP

10) ROOM:

Common ROOM includes those geometric and physical parameters
indexed by room. The parameters in this common are input through the
input subroutines and used exclusively in the physical subroutines.
Default values for these parameters are given in the DATA BLOCK.
Variables:

ZLRZX(KR), ZLRZY(KR), ZHRZZ(KR), ZKAZZ(KR), VMAZZ(KR), as defined in the
Dictionary, Appendix B.
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10) OBJECT:

This common includes those geometric and physical parameters
which are indexed by object. The state flag ISTAT is used in the control,
input, output, interface, and physical routines. The other parameters
in this common are input through the input subroutines and used ex-
clusively in the physical subroutines. Default values for these para-

meters are given in the DATA BLOCK.

Parameters:

ISTAT(KO) Index giving the current burn status of the object KO. These
are listed in Table II, section 4, above. For ISTAT=S,
there are subcategories, given by KFTYP.

ZX0ZZ (KO0) EB(KO) ALPHA FCO(KO)

ZYOZZ (KO) BETA (KO) ZTIG(KO) FS(KO)

ZHOZZ (KO) CHI(KO) ZTPYR(KO) FH20 (KO)

ZNOZZ(KO) ZMOZ0(KO) ZKOIG(KO) T

ZJ0ZZ(KO) ZRFZ0(KO) ZKOPY (KO) ZLAMDA (KO)

ZG0OZZ(KO0) - ZRFZM(KO) XGAMMA (KO) TMFGZ (KO)

ZC0ZZ (KO) QF (KO) XGAMAS (KO) ZUFZZ (KO)

VMOZZ (KO) QVAP (KO) ZRFZI(KO) ANGV (KO)

"Z0AZZ FCO2(KO) ANGH (KO)
All of these are described in the Appendix B dictionary. We also have:
KFTYP(KO) Index describing type of flaming fire (when ISTAT=5):

1 ==> growing fire

2 ==> pool or ignited fire

3 ==> burner fire

A0 (KO) Intermediate variables internal to TMPO@2, which need to

BO(KO) be calculated just once in a run; by going into COMMON,

NOB (KO) they need not be uselessly recalculated each time.

ZK0(20,K0) Temperature profile of (heated) object KO, from the surface in.

ZK0@(20,K0) Same as ZKO, but for previous timestep
AFIRE(KO)=A The fire-spread rate parameter A in GFIR@3 (in m/sec)

11) CVENT:
Common CVENT includes those geometric and physical parameters
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indexed by vent. The parameters in this common are input through the
input subroutines and used exclusively in the physical subroutines. Their
default values are given in the DATA BLOCK.

Parameters: ZBVZZ(KV), ZHVZZ(KV), ZHTZZ(KV), CD.

12) WALL:
This common includes those geometric and physical parameters

indexed by wall. The parameters in this common are input through the

input subroutines and used exclusively in the physical subroutines. Their

default values are a given in the DATA BLOCK.

Parameters:

ZNWZZ(KW), ZIJWZZ(KW), ZGWZZ(KW), ZCWZZ(KW), VMWZZ(KW), ZOWZM, ZOWZN,

AW(KW), BW(KW). Parameters used in the computations in TMPW@L.

N(KW) The number of points at which the temperature of wall
KW is calculated, in TMPW@l. (Thus, the wall is
divided into N-1 slabs.)

ZKW(I,KW) Temperature of wall KW at the inner boundary of the Ith

slab. Thus ZKW(1,KW) is the temperature of the inner

surface.

ZKW@ (I,KW) Same as ZKW(I,KW) but used to store the values obtained

at the previous timestep.

APPENDIX 6.1

The subroutines of CFC V can be conveniently grouped by their
functions. The following is a list of the subroutines of CFC V, grouped
by function. This ordering corresponds to that used when describing
the location of the commons, given above. It is slightly different

from the grouping shown in fig. 8, but the differences are semantic

only.
Control Routines: MAIN, DELTAT, RESETI, NWSTAT, TIGN
Input Routines: DATA BLOCK, INIT, INPUT3, ALTINP, DISP, COPINP,
VERIFY, RECAP
Output Routines: WRIT, WRIT@3, LOOKUP, DEBUG, LIST

Numerical Routines: EXTRAP, NUMER, JACB, NWIN, MSLV, DECOMP,
SOLVE, SING, CONV

Interface Routines: SETJ, SETI, MAPS, CALS, SELSUB
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Physical Routines RDNO, RNWO, RNLO, RNPO, RNLH, RNLV, RNFF,
RDNP, RDNW, RDNL, CNVL, CNVW, HFIR@l, GFIR@3,
PFIR, BFIR@1, LAYR, ABSRB1, ABSRB2, ABSRB3,
PLUM, PLHT, TMPW, TMPO, TMPF, VENT, FLOW

APPENDIX 6.2

In Gauss-Seidel, we use CALS, with input variables XK and output
variables XK1. 1In order to run the physical subroutines, we have to
have the values in common /VAR/. Hence the first step is to "unpack"
the relatively densely packed array XK into the sparse array XIN(500);
the latter array is just the array in /VAR/, only the name being
different. (In file VAR, common /VAR/ is the set of arrays TELZR(5),...,
comprising one "super array" of 500 items. In file VAR1l, exactly the
same array is called XIN.)

The physics subroutines produce variables ending in '"1"--eg. TELZRI.
However, the calls to these subroutines (from CALS) are of the form
CALL(...,TELZR(KR)), so that TELZR is returned without the suffix 1,
and placed directly into /VAR/. The final step is to repack (again via
MAPS) the new array XIN into XK1. XK and XK1 are then compared so as to
check on convergence. If converged, XK1 is placed in X. If not converged
(and provided other criteria are satisfied), XK is thrown away, XK1
placed in XK, and we start over.

In NEWION, we use CALS1l. This produces calls to the subroutines
of the form CALL(...,TELZR1(KR))--i.e., the suffix 1 is retained. These
are placed in common /NEWVAR/ (in file NEWVAR). The array NEWVAR is
also called XNEW (in file NEWVAR1). Thus XK -+ XNEW - Physics - XNEW -~
XK1.

Finally, previous timestep values, such as TELZRP, are placed in
common /OLDVAR/. The alternative name for these variables is of
course XOLD (in file OLDVAR1).

7) Input and Output.

There are two options for the input of data: batch and interactive.
The latter is easier to use, partly because the questions are shown
sequentially on the screen (by subroutine INPUT@3) . The user is pre-
sented with default data (in blocks), and can change as much or as little

of it as he desires. This input is then reviewed (via subroutine DISP),
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and an opportunity to correct any errors or change your mind is given,
before going on to the next block of data. After all the data is input,
a final opportunity is given to change the information.

When the user is satisfied that he has input all the correct
information for a run, all that information is displayed one final time
(by RECAP). During input, if a syntax error is made, this will generally
be caught by the program, and the question reasked. Thus, the input is
relatively flexible and forgiving. It is necessarily less so for batch
processing, of course; in punching the cards, one must carefully
anticipate each question, and have the correct answer ready. Batch mode
is taken care of in subroutine ALTINP. Rather than suppress the questions
to a nonexistent reader, they are merely sent to a ''garbage" file. There's
also no provision for error messages, nor for reaction to syntactical
errors in input. Finally, the "YOU ARE IN TROUBLE" message which appears
when convergence is not forthcoming, does not appear--instead, the
calculation simply terminates.

One of the options available in the interactive mode, is to invoke
subroutine DEBUG (at any preset time); it is of course principally
useful to those users who are actually working on the program itself.

In case of difficulty during execution of the program, DEBUG will be
automatically invoked, permitting the (interactive) user to stop or to
proceed in a number of ways. This cannot be done in batch mode,

of course.

Output is in two modes: first, results of the calculations are displayed
on the screen, periodically (the default period is 20 seconds, but this
can be changed by the user at run time). This allows run-time exam-
1nétion of how the run is proceeding. Second, the results are also stored
on a disk file, which can then be printed. The interval for storage
of results on disk is independent of that for display; the default
value is 10 seconds, but this, too, can be altered to suit the user's
needs at run time.

The user has a choice of two formats for the printed output: first,
the "long form", which is identical to that shown on the screen, and
which gives the values of most of the variables involved. Alternatively,
a short form is available, which gives the values of just eight selected
variables. These appear in a single row, and thus the output is much

more compact. The eight variables displayed can be chosen at run-time
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by the user; if no choice is made, the eight default variables
displayed are: the layer temperature TL; the surface temperature

of object 2, TS(Z); the ceiling temperature Tw; the layer depth hL;
oxygen (mass) concentration Y(OZ); mass efflux from room, ﬁu; rate of
pyrolysis of original fuel item, ﬁf(l); and radius of fire of object
#1, Rf(l).

These two output formats are shown in Appendix C. Some more dis-
cussion may be found in Mitler (28), although that applies, strictly,
only to the Mark IV version.

We also output comments, when various interesting things happen.
Thus, the ignition of an object is announced together with the time this
occurs. Similarly, when oxygen starvation begins and ends for a burning
object, and the burnout of an object.

Finally, we might mention here that the present compiled program
length is about 120 kilobytes (30,000 words). The program is at present
divided into 13 files: CARK5, DARK5, FARK5, TARK5, LARKS, MARK5, NARKS,
PARK5, RARKS5, SARKS5, TARKS, VARKS5, and WARKS5. These are abbreviated
as C, D, F, I, L, M, N, P, R, S, T, V, and W, respectively. They contain
the subroutines corresponding to:
C = convective heat transfer = numerics

D = discovery--i.e. state changes plume
of objects, such as ignitions,

etc.

= radiation

w ® 9 Z
]

= structure and interface routines,

F = fire such as CALS, SETJ, MAPS, etc.

I = initializations, input T = temperature of walls, objects, etc.
L = layer V = vents

M

= Main control program W = output (WRIT, etc.)
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V. SUBROUTINES FOR THE PHYSICS.
In this section, all the subroutines giving the physics used in

Mark V are written up. For each subroutine the file in which it appears
and the calling subroutine is given*. Then there is a brief explanation
of the assumptions and approximations made, and (generally) an indication
of where the equations are derived. Then the input and output variables
are listed; for the former, the subroutine where they are found or
calculated is given, and any explanatory remarks. Finally, the equations
on which the subroutine is based are given. In the variable lists,

no definitions will be given, since these are already given in the

Dictionary (Appendix B.1l).

GFIR@3
Eqs. by H. Mitler, Sept. 1980
This subroutine is in file F; it is called by CALS (or CALS1).
Description. This subroutine describes the burning of a horizontal fuel
slab, ignited at the center of its top surface. The fire grows slowly
until the entire surface (including the sides) is burning. The pyrolysis
rate, the resulting burning and energy-release rates, the fire radius
and the flame shape are all calculated, as a function of time. (It is
similar to GFIR@Ll in CFC IV and to FIRE@2 in CFC III.)

The pyrolysis rate is taken to be proportional to the net heat flux
to the surface and to the (instantaneous) burning area. The net heat
flux is the radiation incident from all sources (principally the flame)
plus the convective heating from the flame, minus the reradiation.

For small flames convective heating is substantial, but rapidly falls
in importance as the flame grows. Theoretical expressions for it exist,
but they were felt to be too complex to include. Instead, the re-
radiation is simply cut down for small flames in such a way that the
observed growth rate of pyrolysis is followed. This ad hoc procedure
turns out to be very simple. The burning surface is taken to be at
700°K (polyurethane foam is our default material). Note that if we
reradiated at 700°K without adding a convective contribution, the flame

* This will generally be CALS. When that is written, it will be
understood that it will be CALS1l, when in NWTN mode.
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would self-extinguish when small. We ignore the energy lost by diffusion into
the slab. The pyrolysis rate is also modified (in an arbitrary way) to take
into account the smooth ceséation of pyrolysis as the fuel nears burnout.

' The flame is modeled by a right circular cone of hot (grey) gas, of
semiapex angle Y. The initial value of ¥ is wo=30°. The cone is homo-
geneous, and has the temperature Tf=1260°K, the absorption coefficient
.<'=1.55m.1 (values obtained by L. Orloff and G. Markstein at FMRC).

We do not yet know how the flame is affected by the vitiated layer ;
as in previous versions, we assume that the flame continues to burn as
fully as in the open air, so long as the amount of air entrained into the
lower part of the plume (below the interface with the hot layer) provides
enough oxygen. That presumes that all of the air entrained therein is
incorporated into the flame, and that none of the oxygen-vitiated gases
from the upper part of the plume (that traveling through the hot layer)
contribute any oxygen. These seem like a fairly reasonable set of
assumptions, and the obvious errors are (partly) compensating ones.

When the layer is so low that the amount of air entrained is in-
sufficient for "full" burning, we call this "oxygen starvation", and
reduce the burning rate appropriately. We assume constant volumetric
heating, and therefore must reduce the cone volume. This is done by
increasing Y. ¢ is also increased near burnout, when the burning rate
is reduced.

We have--erroneously no doubt--assumed that when the layer actually
covers the burning item, it continues to pyrolyze as before, even though
there is no flame. And that if the layer were to rise, the flame would
reappear. We therefore assume that the (immersed) surface stays at its
previous temperature and pyrolyzes due to the radiative flux it receives
from the (accessible part of the) layer, and from the extended ceiling
(this is the flux ¢+). We ignore convective heating or cooling by the
layer, and reradiation from the surface. Even when the surface is not

quite covered, but ¢ (see calculations below) would fall to a low

net
or negative value, we take ¢, to be the minimum the surface receives.
When it is nearly burned out, however, it must receive still less-—-

we then assume an effective flux ¢eff such that it will burn up with an
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= -mf/Z.

The fire radius grows until it reaches a maximum such that the

resulting area is the area of the top plus sides of the slab. This

equivalent maximum radius Rh is of course larger than the radius

corresponding to the top surface above.

The spread rate until R=0.95Rm

is given by an expression which yields approximately exponential growth

(as observed) but avoids the divergence inherent in older versions of this

routine.

shown below.

detailed discussion.
urethane foam #7004.

Output
£ ZM0ZZ

ﬁf TMOZZ
Y = PSI(KO)

B
1

(11}

Input Required
from Common

£4". = FQPOR(KO
Sdoe QPOR(KO)
o n -
Qo = FQLOR(KO)
I 1 =
g = FQWOR (KO)
ﬁp = TMPZZ(KO)
m, = ZMOZZ

Rm = ZRFZM(KO)
R = ZRFZZ(KO)
Ro = ZRFZO(KO)

A(KO) = AFIRE

>
m

XGAMMA

X = CHI(KO)

H, = QVAP(KO)

Beyond that point, the spread rate is taken to slow down, as
See pp. 60-68 of Technical Report #34 (Reference 3) for

The default data used here is for flexible poly-

Ef = TEOZZ

R = ZRFZZ

Semiapex angle of cone modeling the flame (Actually
the tangent of y is calculated and carried in COMMON

as TPSI)

Calculated
in Subroutine

Remarks

RNPO

RNLO RDNO

RNWO

PLUM

GFIR

INPUT

GFIR

INPUT

DATA

INPUT

INPUT

INPUT

Here, object KO is the burning one;
the impinging fluxes are from all
flames (plumes), and all walls.

Remaining fuel mass from previous
timestep

Radius of fire from previous timestep

Spread-rate parameter;0.0109 m/sec
for PU foam

Default value is for PU foam, 14.45
Default value is 0.65 (for P.U. foam)

2.054 x 106 joules/kg, for PU foam
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Calculated
in Subroutine

Input Required
from Common

Remarks

HC = QF(KO0) INPUT
mo = ZMOZO(KO) INPUT
Tf = ZKFZZ = T INPUT
Tp = ZKOPY (KO) INPUT
Ta = ZKAZZ INPUT
cp = ZCFZZ(KO) INPUT
K = ZUFZZ(KO) INPUT
Calculations

N = e e °n

A = e ¥ 39 + Ldps

4" = oT_"* = min[13200,21700 R]
rr S

2.89 x 107 joules/kg for PU foam

When a material is a composite which
is partly inert, it is expedient to
ignore that part, and only list the
mass of the pyrolyzable part; we
would thus take m = pyrolyzable

fr .
action of mtotal

1260°K
600°K for PU foam

Default value, 300°K

1.55m *

Radiative flux impinging on fire KO
from all hot sources

Effective reradiated flux (this
mimics including the effect of
initial convective heating of the
surface by the flame).

Net flux incident on fire KO, when
flame height is not significantly
reduced.

Minimum flux incident on fuel surface,
when not near burnout.

2
¢ 6 = me /27R Effective flux seen by (fictitious)
e v entire surface mR°, when fuel is
nearly exhausted.
¢max = max(4’net:’4>+)
= f fire KO.
¢ min(¢max,¢eff) Flux incident on surface o re
= I
C ¢/0Tf
. Ac@ +c/2 +c?/3) R<0.95R Rate of change of fire
R = radius (i.e. spread rate)
(R.m - R)/10 R>0.95Rm



Calculations (cont'd)

= 5 1 1]
R =R +.4‘R(c yde

—~mR2
b o= ‘ R ¢/Hv, ¢>0

B l 0 $<0
G = mf/ZﬁB
i = fBa-e5, e0
£ B8
0 $<0
me = m +./o'tn'1f(t')dt'
ﬁb = min[-xﬁf,(ﬁp + ﬁf)/Y]
H' = H - -
cp(T T)
Eg = —dyH

when ﬁb < - xﬁf,

tan ¥y = x tanwolﬁfllﬁb
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Remarks
Radius of fire

Unadjusted rate of change of fuel mass
(negative of pyrolysis rate)

Convenient definition [for ﬁ3<0]

Negative of pyrolysis rate, adjusted for
smooth burnout

Mass of fuel remaining at time t

Burning rate, limited by combustion
efficiency x, or by oxygen starvation

Effective heat of combustion

Negative of power output by combustion

Semiapex angle of fire cone, when burning
is oxygen-limited

Note that xytan30°=(0.65)(14.45)A/3
= 5.422762

PFIR@2
Eqs. by H. Mitler, July 1980

In file F; called by CALS. The name is a contraction of "Pool Fire".
Discussion. This subroutine calculates the rate of pyrolysis of a pool
fire -- i.e., a fire of fixed radius. It differs from FIRE@3 (in CFC IV) in
that (a) the fuel can have a dinite mass, (b) it can be for any fuel, and (c)
the data is read in via INPUT, rather than being given by data state-
ments, in the subroutine itself. The pyrolysis rate is taken to be
proportional to the net incoming radiative flux. PFIR@2 also makes
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the calculations for a fire ignited during the run, by autoignition:

When the entire (horizontal) surface of a combustible material

is heated to its ignition temperature Tig’ ignition will start at a

"hot spot" and spread very rapidly over the surface. This rapid spread
was inadvertently done incorrectly in IFIR@1l (in CFC IV); it was corrected
in IFIR@2, where the radius was taken to increase asymptotically to its
maximum value with an e-folding time of 2 seconds. Note, however, that

in order to avoid numerical instabilities with pool fires, the same
time-dependence for R(t) was used in PFIR. Hence IFIR and PFIR became
essentially identical, and they have been combined here; IFIR@2 therefore
does not appear in this report. This subroutine gives the pyrolysis rate,
burning rate, energy-release rate, and the effective radius of the burning
surface after ignition (which, for a pool fire, occurs at tig =0). For
oxygen-starved fires it also gives the (increased) cone angle; that is
one improvement over IFIR@2. Another is the way in which the slow decay
near fuel exhaustion is calculated: it is now so calculated that the
decay time is relatively constant, independent of the original fuel mass,

room size, etc. A third, and most important one, is in taking the re-

radiation into account, as in GFIR@3.

Output: me = ZMOZZ, ﬁf = TMOZZ, ﬁf = TEOZZ, R = ZRFZZ, tany = TPSI.

A Calculated Calculated
Input Required or Found in Input Required or Found in
from Common Subroutine from Common Subroutine
gq;f = FQPOR(KO)  RNPO HV = QVAP(KO) INPUT

é{f = FQLOR(KO) RNLO } RDNO Hc = QF(KO) INPUT

'"f = FQWOR(KO) RNWO m = ZMO0Z0(KO0) INPUT

tilp = TMPZZ(KO) PLUM Tp = ZKOPY (KO) INPUT

m, = ZMOZZ (KO) GFIR , Ta = ZKAZZ INPUT

R.m = ZROZM(KO) INPUT cp = ZCFZZ(KO) INPUT

y = XGAMMA INPUT Kk = ZUFZZ(KO) INPUT

X = CHI(KO) INPUT tig = ZTIG(KO) TIGN
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Calculations (cont'd):

100m ch(At)2

= 8C
ts pcTV
apa

rr
= &t _ an
¢ ¢ ~ 9.
s _ 2
If qz Q. < 0, however, let
= " 1}
¢ =qre t qu
R = Rm[l - e-(t-tig)/zl
A = 7R?

v

. = - 2
g { "R2 $/H , ¢
0 s ¢

IA

F = { -mf/Zmf , ¢>0
0 ;

A

iy = g (1 - e

= [t- ' '
m, =m + omf(t )dt

ﬁb = min[-xﬁf,(ﬁp+ﬁf)/Y]

H’ = Hc - cp(Tp - Ta)

Ef = -mbHc
When ﬁb < -xif

tany = x tanwolﬁfl/ﬁb

Remarks:

Time (after ignition) at
which fuel flow is on fully
(in seconds)

Fuel flow rate as a function
of time

Radiative flux impinging on fire
KO from all hot sources

"Effective'" reradiated flux (see
discussion in text of GFIR)

Net flux incident on fire KO

Radius of fire

Area of fire

Unadijusted rate of change of fuel
mass (negative of pyrolysis rate)

Convenient definition

Negative of pyrolysis rate, adjusted
for smooth burnout

Mass of fuel remaining at time t

Burning rate, limited either by
combustion efficiency yx or by
oxygen starvation

Effective heat of combustion

Negative of power output by
combustion

¢ is the semiapex angle of fire cone,
when burning is ogygen—limited.
Note that xAtan30 = (0.65)(14.45)

= 5.422762 /3
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BFIR@1
Equations adapted from PFIR@1l by John A. Rockett, April 1980.
Coded by John A. Rockett, largely a direct copy of PFIR@1.
Description: This subroutine calculates the energy output from a gas
burner fire. The routine is a specialization of the fixed diameter pool
fire routine PFIR@Pl. To obviate some numerical problems associated
with the rapid initiation of this type of fire, the initial rate of
heat release is arbitrarily reduced. The (input) gas flow rate is
assumed to build up from zero at zero time to the constant input value
at a time TSTART, following a parabola with finite slope at time zero
and zero slope at time TSTART. Note that here, of all places, V¥
ought to be variable. In this first version, however, we ignore that

fact.

Output for the burner, object KO:

me = ZM0ZZ Stays at initial value ZMOZZP(KO).

ﬁf = TMOZZ Never changes from gas burner input flow

) rate -TMFGZ after te-

Ef = TEOZZ

Rf = ZRFZZ Stays at initial value ZRFZM(KO).

Required

Input From Remarks

ISTAT (KO) INPUT Status index, = 6 if burner is ignited

INEWT CALS Control index, = 1 if CALS is initializing

ﬁg = TMFGZ(KO) INPUT Final (maximum) gas flow rate

Y = XGAMMA (KO) - INPUT Air/fuel mass ratio for the fuel from
that burner

ﬁp = TMPZZ (KO) PLUM pa = VMAZZ INPUT

X = CHI(KO) INPUT cp = CP INPUT

t = ZTZZZ MAIN hR = ZHRZZ INPUT

At = DT MAIN W = Ly = ZLRZY INPUT

ZKAZZ INPUT L = Lx = ZLRZX INPUT

Hc = QF INPUT

Calculations: Remarks:

vV = WLhR Volume of room
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Calculations (concluded) Remarks
t> t, ne> ﬁf - ‘ﬁs Fuel flow rate as a function of time

éf - H min[-xﬁf,(ﬁp + 1) /y]

RDNO
In file R; called by CALS. _
Description: Controlling subroutine for radiation to any object (whether
burning or not) in room KR. It calls sub-subroutines RNLO, RNWO, and
RNPO, which do the actual calculating. It also sets to‘zero any flux
which 18 less than 0.1 w/m2, as too small to be physically meaningful.
This subroutine is essentially identical to the version in CFC IV. The
original version was RADO@l, found on p. 49 of CFC III.

Output ﬁ{o = FQLOR, ﬁ;o = FQWOR, qu = FQPOR from subroutines

RNLO, RNWO, and RNPO, respectively.

In file R; called by RDNO.

Description: Controlling subroutine for radiation from the layer to a
horizontal or vertical surface. It calls RNLH and RNLV, respectively, to
get these fluxes.

Output From Subroutine
a" = FQLOR RNLH When object is horizontal
Yo ~ RNLV When object is vertical
Input
ea = ANGH(KO) INPUT Angle (plane) surface of object KO makes with
the horizontal (in degrees)
Calculation
If 6, < 450 R assume surface is horizontal -- i.e. 6, = 0, and call
H H
RNLH
1f o, > 45° R agsume surface is vertical -- i.e., 6, = 90°, and call
H - H
RNLV
RNLH

Equations by H.E. Hitlet, April 1977

Modified July 1978, October 1980. In file R; called by RNLO.

Description. Each object and surface in the room radiates to every other
object. The two most important radiators are the flame and the hot ceiling



gl—o—i

-92-

layer, consisting of hot gas and soot. RNLH calculates (approximately)

the radiation from the layer to a horizontal surface (the object KO). The
room is divided into four quadrants by the point at the center of the surface,
and each resulting quadrant of the layer is approximated by the quadrant of

an equivalent cylinder -- i.e., one of equal thickness and volume. Version

IV differed from that described on p. 53-4 of CFC III in including the case
where the target surface is burning. The present version differs from that in
Mark IV only in having a variable y and (of course) in using the LIMITS
procedure. The derivation is given on page 42 of TR34.

f— Lx >
1,7 ' | : T
/l// Hot Loyer]/ L |
ULt LD L s ! A
2 4
h ' Ly
R |
P Surface being : Sl = --—-—- -
heated X Ay As
—S J_ ] _L
= Xo—% —X o —
— Lx | -
Fig. 25. Side View of Room Fig. 26. Top View
‘Qutput
q{o = FQLOR(KO)
Input Required Found or Input Required Found or
from COMMON . Computed in from COMMON Computed in
X, Y, = ZX02Z,ZYOZZ INPUT o = SIGMA DATA BLOCK
L]
hR = ZHRZ2Z INPUT TL = ZKLZZ LAYR
ho = ZHOZZ INPUT k = ZUFZ2Z DATA
hL = ZHLZZ LAYR k = ZULZZ(KR) ABSRB
L= Lx £ ZLRZX INPUT Rf = ZRFZZ(KO) FIRE
B= Ly = ZLRZY INPUT tan ¢ = TPSI(KO) FIRE
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Calculations Remarks
D = hR - ho - hL Distance between layer and object surface
1~ %Y

A2 = xo(B - yo)
Areas into which ceiling is partitioned
37 @ - xo)yo

4= L -x)B-y)
R, =§— Equivalent radii of ceiling quadrants

= (R2 2y1/2
Zoi (Ri + D)

2 211/2 >C0mputation parameters
Z,, = [Ri + (D + hL) ] 11, 4

zzgi
517, MLt ” 24))
i
-Six
e = l1-e Effective emissivity of ceiling layer
OT;" 4 2\"1
Radiative flux from the hot layer to
&= the point (x ,yo) on the surface of
LO LO object KO, when®it is not burning.
When the object is flaming, then
-T
e + siny

A1) =
90 = %10 1 + siny
where 1 = ka

Nomenclature

The letters RN in the code refer to radiation.
The third letter identifies its source:

L - layer P - plume
F - fire C - ceiling
W - wall etc.

The fourth letter specifies the nature of the receiving surface (when

that is appropriate):
H - horizontal 0 - object (assumed horizontal!)

V - vertical W - wall

etc.
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RNLV

Equations by Henri E. Mitler, February 1977.

In file R; called by RNLO.A

Description. Comments are the same as for RNLH. This subroutine gives the
irradiation of a vertical surface, however. The geometry is as shown in
Fig. 25 of RNLH and in Fig. 27 below, which is the top view of the room.

The exposed surface is at 0, and for the orientation shown, given by the
angle vy (i.e., the azimuthal angle ¢, in spherical coordinates) it "sees"
the area bounded by the line segments QR, RC, CB, and BQ -- i.e., bounded by
QRCBQ. The area B, is bounded by QOPBQ, B2 by OPCRO. POR is a right angle.

1

Note that y takes on any value between O and 2w. B1 and B2 are given by

the areas shown in column 2 of Table III below, which refer to the areas

displayed in Fig. 28. 1In the latter figure, O < 8 < 7/2. The values S,

are given in Table IV.

\p ¢ 7
4R
\\ 82 //
-7 Wzl
8] \\ // =Ly S]
Oy 1 B
S ’/
b >N
F""'Xo_)‘ [l< L; g
Fig. 27: Top View of Room. Vertical Fig. 28: Definition of the
T Surface is at the point O. areas S,.

TABLE III: The areas B, and B, in terms of S.,; B in terms of Y.

1 2 i
Y Areas B2 & Bl’ B
respectively
0_<_y<% Sg» S, + Sy Y
%-5 y<nm S2 + 83, S6 Y - %
T<¥y< %ﬂ 56, S1 + S4 Y-
%ﬂ <y <2m Sl + SA’ S5 Y - %ﬂ
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TABLE IV: The areas Si'

s;= %(L—a)ztane if tanB < ——;’:2 = (L-a) (W-b)- %(W-b)z‘zotf3
| if tanB > %E%
= a(i-b)-L(W-b)2 a | _2a° _a_
S,= a(w-b) 2(w b) “tang if tamB < Wb 5 cots if tanf > =

2

5,= 2 tans if tang < 2 = ab - %zcot:B if tang > 2

84= b(L-a) - %ztans if tanB < ng = %(L-a)zcotB if tang > L%Q

SS- L(W-b) - Sl - S2 |

S6= bL - S3 - S4

Output Definition

QEO = FQLOR(KO) : Radiative flux to (vertical) object KO,

from the hot layer (in w/m2).

Input required
from COMMON

Exactly the same as in RNLH, except that we do not need k, Rf, or tan V.
However, we do need

Y = ANGV(KO) INPUT Orientation angle of exposed surface of
KO (see fig. 27) (Not to be confused

(Moreover, B = W = Ly) with XGAMMA!)

Calculations

a,b = x
s 0’7o

R1 ='v%Bl/ﬂ s R2 =«¢4327n Radii of equivalent quadrants, yielding
the same radiating volume and area as
the actual areas Bl & BZ'

D= hR - ho - hL
If D > 0:
R

= “1
a, = tan S

o




Output (cont'd)

Definition
1 ok PRy
B, =0y - % sin2ay = tan ° 5% - 5y R? i=1,2

=" 2 2
Zoi Ri + D

= 2 2
Z)4 \/Ri + (D +h)

Z + R Z + R
2m 1i i i
Si = 3 [(D + hL) in (—B_I_E;_) -D 1n_(_2_5___£)] Effective beam
i : lengths in the
b2 —at layer.
o GTL 2: Six )
Ao = 77 4 Bi(l -e ) watts/m Radiative energy flux incident
i=1 on the vertical surface, due to
the hot layer.
If D < 0,
Case where the object is in
OIZ 2 —-Pil P12 the layer.
&£O=TE 2 -e - e .
i=1
i + ?j + Ri
where Pij =4 hj 1n o j=1,2
J
and = hL + D,
ha_D-

RNWO@2

Eq . by H. Mitler, Sept. 1980.

Called by RDNO; in file R.

Description. Every object (burning or not) receives radiation from the walls
and ceiling of the enclosure. This subroutine calculates that flux for
horizontal surfaces. It differs from RNWO@l (used in CFC III & IV) in the
following ways: (1) The room is broken up into four rectangular sections
(with the target object at the corner of each piece) and each piece is then
apprax imated as the quadrant of an equivalent cylinder, as in RNLO. (2) The
view factor for each piece is then computed geometrically, rather than being
inferred from a previous calculation. (3) The attenuation through the hot
layer is found more nearly adequately. (4) The radiation from the cold
walls is included here as well, rather than being found in HEAT, TMPO, or

the other subroutines which calculate the surface temperature of objects.

(5) The corrections to be made for the vent surfaces have been ignored here;

this is generally only a minor error, however.
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OQutput
QWO = FQWOR(KO)
Found or
Input required Calculated Input required Found in
from COMMON in Subroutine from COMMON Subroutine
X,y INPUT A = ZLAMDA DATA BLOCK
L =L = ZLRZX INPUT tan ¢ = TPSI DATA BLOCK
x or FIRE
hR = ZHRZZ INPUT Rf = ZRFZZ FIRE
hL = ZHLZZ LAYR T = PI DATA BLOCK
h0 = ZHOZZ INPUT o = SIGMA DATA BLOCK
Kk = ZULZZ ABSRB Ta = ZKAZZ INPUT
W= Ly = ZLRZY INPUT T., = ZKWZZ(KR,1) HEAT
Calculations Remarks
A1 = Xy
A2 = (L - xX)y Areas of quadrants into which room is
A = x(W - y) divided by the center of the (target)
3 v object. As in RNLO.
A, = (L -x)(W- y)
Ry ="4Ai/w Equivalent radii
H=nh_ - hL - h Distance between object surface and layer
R o interface.
hi = hL +H = hR - ho Distance between ceiling and object surface.
Needed when object is immersed in the layer
gases.

1\2
L
2c |1 H— h! + R, -, R2 + h'?2 H<O Mean opacity

R L i i L ’ -
i of layer

T, = +

1 2.<1+$2 h. +JRZ + H2 —JRZ + (H+h) 2
R, L i i L| ,H>0

1 H<O View factor of extended
ceiling, at object KO.

€
[
&=
™M=
H
+
ol
:>|§':
N
V|
fae
v
o

-T
we = 4

&=
™
]

[
=
\'4
o

{=1 |, mZ
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Calculations (cont'd) Remarks

= o ¥ Th - 4
¢ = we oI+ 1 w)cTa

¢W0 = ¢ If object is not burning.
_?!
_ .8 T 4+ sin ] - If object is burning.
%0 =% 1 + sin v
where t' = Rf/A Approximate opacity of flame.

RNPO@1
Eqs. by H.E. Mitler, October 1977. Extended, August 1980.
In file R; called by RDNO.
Description. This subroutine calculates the radiant flux impinging normally
on a horizontal target surface P, whose center is located a (horizontal)
distance D from the center of (the base of) a solid radiating come. This

cone has semiapex angle Y, base radius R,, and is assumed to radiate as a

uniform grey gas at temperature T. Thislis meant to approximate a
flame (of base radius Rl)' It is located on a fuel slab which extends a
distance So beyond the flame center, in the direction of the target (see
figs. 29-32). For points external to the fire, the flame is assumed to appear
truncated by the sooty layer (figs. 29 and 30). 1If the target lies above
the fire base, the 'visible'" part of the cone is truncated from below, as
well (fig. 29). If the target lies below the fire base, the width of the fuel
slab comes into account explicitly (figs. 30 and 32), and the geometry becomes
much more complicated. When D = Q0 -- that is, the target is the fire base
itself -- then the entire flame is assumed to radiate down to the base, even
when there is an "intersecting'" sooty layer.

This is a complete revision of RNPO as it appears on p. 50-51 of
CFC III (the derivation of those equations is given in TR34, p. 24-29). It
is also an extension of RNPO as it appears in Mark IV; the principal extensions
are: 1. to include the case shown in fig. 30 -- that is, where the base of
the fire lies above the target. 2. The target may itself be burning.
3. We have also included the flame-flame interaction, via the (new)
sub-subroutine RNFF. The mean flux over the fire base (from the flame) was
taken to be 2/3 ds of the value at the center, in Mark IV. A more precise
expression is used here. Finally, the flame height is made to decrease
near fuel exhaustion. The derivation of the equations used in Mark IV is

given in TR 34, p. 29-32.
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\
|
| Ry —
IP T kR 1 Fuel / ‘
| |
| h? (_S.' — S'Ob / )
he| | = Frel=s =S Torsetl | — So—> :
—— == =20 | i Iy
JT77777{77777777777/\/77777 «— D —| Tc
Floor D > |
Fig. 29. First possible config- Fig. 30. The other possible config-

uration, for an external targe
The shaded part of the cone is
the part which radiates to the
point P.

the base of the fire lies

The (ori
+ S.,

gst i%

uration:
above the target surface.
inal) fuel slab has length S
and shades the target, at le

t.

part. The cone above the target is
dashed, because the target may or
—_— may not be burning.
/ \
L
2 \ Ry /
1 /
N b
!
Fig. 31. Top view of the config-

uration shown in Fig. 30.

8o

8m

g—

Fig. 32. For h
angles shown here (sé€e text).

k‘Rz—i

> h_, we define the
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Output

§:¢fo = FQPOR(KO)

f

Input required Found or

from COMMON Computed in Remarks

xt = ZX0ZZ(KO0)

INPUT KO is the target object

Y, = ZYO0ZZ(KO)

x, = ZX0ZZ (K02)

INPUT KO2 1is the flaming object
yo = ZYO0ZZ(K02)
. Radius of cylindrical fuel slab.

Ro = ZRFZI(K02) INPUT \If slab is rectangular, with distance
S between flame center and edge of
s¥ab, use equivalent radius R =25 /.
See figs. 29-32. °

R2 = ZRFZI(KO) INPUT Width (or radius) of target. If
it is burning, R2 is the fire
radius.

Input required Found or Input required Found or

from COMMON Computed in | from COMMON Computed in

me = ZMOZZ(K02) FIRE hp = ZHPZZ(K02) PLUM

R1 = ZRFZZ(K02) FIRE ¢ff = FQPP RNFF

tan y = TPSI(KO02) FIRE k = ZUFZZ DATA

ﬁf = TMO0ZZ(K02) FIRE T = ZKFZZ(K02) DATA

ht = ZHOZZ(KO) INPUT ™= PI DATA

hf = ZHOZZ(K02) INPUT o = SIGMA DATA

Calculations Remarks

For each flaming object KO2, we calculate the flux to the target

KO, as follows:

Hy =hp - hy
h, or hy > Hy ==> 0., =0

- Z - 4
D =i\Fxt xo) + (yt yo)

S =R /n/2
(o] (o]

Height of interface above the floor.

Distance between center of target and
center of flame.

Equivalent center-edge distance, for
rectangular slab.
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If me 2 0.2 kg,

H = R1 cot Y Height of flame (i.e. of cone)
When burnout of the fuel nears, we reduce the height of the flame
appropriately. tc is the first timestep at which we find m < 0.2 kg;
then if me < 0.2 kg, define a = H/Y ﬁf(tc)|,
and thereafter H(t) = aOVIﬁf(t)I, t > tc.
X, = ht - hf Height of target above fire base
Case 1. X > H Target surface lies above tip of
flame, so that it gets no flux.
==> ¢FO =0
Case 2. x <0 This corresponds to the configura-
° tion shown in figs. 30 and 32. We
Pefine H = -x =h_ - h then have three subcases:
o o f t
Case 2a. 6, > 6
—_— 1- "0
i.e. tan 61 > tan eo, The entire target surface is ir-
u radiated by flux from some part
or H 0 of the flame.
S - D-S -R
o o 2
1 Ho tan2w 3 3
= pu— - - — Vl
Logs 3D"(D—S°) [(D_SO)Z+H02]3/2 ([H(D-So) HOSO] (D So) A )

where AV' = max[0,(H - hp)3].

Also, SOHo tan ¥
L = 0.77E% - ———————-——-]

1 D-S
0

and L
¢, = orv—eff (1 - e-KL>

L

' = kRZ Approximate opacity of flame

over target, when latter is
! burning.
= ¢(1,2) = ¢ae Target is flaming
¢FO = ¢ ’ =
¢a Not flaming
¢FO is the mean flux from flame (over object 1) to target object

(object 2).
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Case 2b: em < 91 < 60 Only part of the target surface
"sees" any part of the flame.
H H
or __o— < .IL < -—o__
D-S ¥R, - S D-S -R
o 2 o o 2

bpo = $(1,2) [; +8dn ¢ ;os ¢ = ¢] Note that this takes on two values,
depending on whether the target
is burning, or not.
D-S -SH/H
o oo

where cos¢ = R N.B.: ¢ is in radians
2
Case 2c: 61 < em i.e., Ho H The target surface
D-S +R. > 5 is entirely shaded
o 2 o by the fuel slab, or
h the fuel slab and
or H s _P the layer.
D-S +R S
o 2 o
$p0 = 0
Case 3: 0 < X, < H Figure 29 applies.
D > R1 ==>x, = min(hp,H) - X
D < Rl ==> xl =H - X, Target lies within flame radius;
in this case we assume that the entire
cone radiates down -- whether or

not the layer intersects the flame.

X, <0 ==>9¢__ =0 No radiative flux at all, if target
1- FO PR
surface is in the layer.
Xy >0: R - Rl - X tan y Base radius of visible part of cone

If R < 0, ¢FO =0 (for D>0). If D =0, then set L = 0 and go on to
find ¢F0 as below.

£ = D/R
cr1e 1o [ie Bl
* L is an effective distance (a

modified D, essentially)
£ <1==> L =0.,5068 D g2:8254

s, =J]:2 + R?

-2 3 - 2
s, Ji +x%+ R X, tan y)

‘ ) ” So - Rsinw )'
= 2k1/£z; xl2 -L- (sl-so)cos ¥ + Rsiny cos wln(s +x secy-Reiny |

1
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Calculations (cont'd)

~
1]

2
1.27324 kR[:l + 0.84(%) ] Effective mean opacity (non-
dimensional optical depth) of cone.

max(1,10~6) To avoid "overflow'" problems in
the computer.

T

non-flaming target

: -1
= poT4 (28— )d ¢t
Then for L > 0, ¢FO AoT ( T ) £ T flaming target

while for L = 0, (flame radiating to its own fire base)

-0.7755A
e

= ogT*(1 - )

*Fo
(For the center of the base, the factor 0.7755 would not appear; it
is there in order to give the mean flux over the entire base).
Finally,

+ ¢FF Whatever flux it has received dir-
ectly, it may receive some more from

the fire, via the flame-flame inter-
action, if the target is also burning.

¢ = ¢

FO FO

We then sum over all the flames:

>I0
§ FO

RNFF@2

Eqs. by H.E. Mitler, July 1980.

In file R; called by RNPO.

Discussion. This sub-subroutine calculates the energy absorbed by a

flame due to radiation from another flame which may be shaded by a fuel
slab. Each flame is modeled by a homogeneous gray gas in the form of a
cone of semiapex angle wi. The slab upon which one flame rests lies a
height Ho above the base of the other flame, and is opaque; its leading
edge is orthogonal to the line connecting the (parallel) axes of the cones,
as shown in fig. 33 below. As shown in fig. 34, one or both of the flames
may be interrupted by the hot, sooty gas layer, assumed to be entirely
opaque for the present calculation. Once the energy absorption rate is

found, the flux to the surface due to this extra energy 1is calculated.



Fig. 33.
eling the fires, with #1 sitting
on its pedestal.
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Top view of cones mod-

Fig. 34.
shown in fig. 33.

Side view of configuration

Needed input Source Remarks

R4,R2 FIRE Radii of flame bases, ZRF2Z(i)

Ro INPUT Distance from cone 1 to edge of slab
V1,V¥2 INPUT Semiapex angles of cones, PSI(i)

Hi = hp(Z) PLUM ZHPZZ (2)

Ho INPUT Height of base 1 above base 2

kq,k2 INPUT ZUF2Z (i), i=1,2

T4,T2 INPUT ZKF2z (i), i=1,2

(x,y)1; (x,¥)2 INPUT Positions of objects 1 and 2

OutEut

ij

The part of the flux to fire base

(i.e., flame centers).

j due to flame

i (i=1,2; §j=2,1).
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Calculations Remarks

G = 2kqikaoT1/D?

_ )JH2-Ho Hz > Ho Amount by which height of cone 2 exceeds
u 0 Hz $Ho height of slab on which cone 1 stands

_ HoRo
c D-Ro +R2

3_y3

l Hz Hu H4 > H
v 3 H2(1l+cscyz) +H2(1 - cscia) 17 %
L u
A, 3 3
L 1 [Hu+ (D-Ro)H1/Ro] ° - Hu

= <

3 (v, + (D-Ro)H4/Ro]l2(1 + cscya) +H§(l-cscli)z) o Ha Hc )

VL/AL is the ratio of absorbing volume of lower part
of cone 2, to its bounding area. Four times this quantity
is (approximately) the mean beam length. Note that if
H, <Ho, there 18 no interchange of fluxes.

YP_ Hu Same remarks apply as for VL/AL, but
A 3(1 + cscyz) for the upper part of the cone. We
neglect the possibility that the hot
layer truncates the cone, for simplicity
1 2
3 R4H4 . Hi>H1 + Ho
V4 1 2 1
Vy = — =4 = -= - 3 2 < < +
1 - 3 R3H, -3 (Ho + H1 Hi) tan4y4 Ho <H, Hq + Ho
<
0 Hi Ho

V4 1is the part of cone 1 which is not

obscured by the hot layer.



\ Ru) /Hi +D2-D
=2p2[sint 2 ) .
( Au 2D (s:.n D m Hi>H2
u
, [R2-H; tanya \/(Hg—Hi)z +D2-D
= - 25in~ . > >
A 3, - 2D3sin 5 2 -, Hz > H, >Ho
0 >
\ Ho/Hi
Apu is the (approximate) projected area of the upper
section of cone 2.
2D25in'1 R2 [-—L—‘H"'D—DJ - A Hy >H
D H2 u c
ApL = .
(D - Ro) [2H_+ (D-Ro)H1/Ro] =+ tan Y2 Hi1<H
u Ro [od
ApL is the (approximate) projected area of the visible
part of the lower section of cone 2.
3 . .
M = 1+ [1 - = (gS:O-R )J M 1is (roughly) the mean fraction of
1 0~ 2 the emitting cone, seen by the lower
part of the absorbing cone.
L] Vu . L]
Eu x 2 X;- Apu Eu==€qu1 is the power abs?rbed by
the upper part of cone 2. EL, that
. VL by the lower part, if not shadowed.
€. 22— A
L AL pL
é1z = Gv1(éu-+éL,M) Power absorbed by cone 2, from
radiation emitted by cone 1.
4 .
. . T2 1+ siny2) [ cosy,
= e —_= ] bed b e 1, from
E21 E13(T1) (l-rsinw1) (coswz Power absorbe y con ’
radiation emitted by cone 2.
b12 = é1z/vR§(1-+CSCWz) Flux to base of fire 2, due to fire 1,

via flame-flame interaction.
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. 2
21 = E21/TRT (1 + csciy) Flux to base of fire 1, due to fire 2,

via flame-flame interaction

Egqs. by H.E. Mitler, May 1978
In file R; called by CALS

Description. This subroutine calculates the radiative heat loss from each
flame. Although we still use a uniform, homogeneous cone of gas as a model
for the flame, the expression has been cast in a form such that if we prefer
to use a conical shell instead, we can do so. (LIMITS has been inserted,
of course.)

Just as in RNPO, when mg falls to 200 gm, the flame height is
reduced. (We do not take into account the possibility of an object having

an initial mass less than 200 gm.) The equations are derived in TR34, pp.

23-24.
OutEut
EPR = TEPZR (KO)
Input required Found or
from COMMON ComEuted in Input From
0 = SIGMA DATA T = ZKFZZ DATA
R = ZRFZZ(KO) FIRE K = ZUFZZ(KO) DATA
éF = TE022 (KO) FIRE &f = TMOZZ (KO) FIRE
m™ = PI DATA L = ZMOZZ (KO) FIRE
tan Yy = TPSI FIRE

Remarks
o = ALEPH DATA If a conical shell is desired, then QR

is the radius of the nonluminous inner
cone--i.e., (l-0)R 1is the conical
shell's thickness. a=0 yields the
solid cone, therefore; oa=0 is the

default value.
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Calculations Discussion
0o = R cot W/V]ﬁf(tc)l ' When m. falls to 200 gm, the flame

height is reduced. tc is t at the
first time step such that mf€200 gm.

H(t) = aoV|mf(t)| ' t3>tc
cos Y = H/VRZ+HZ , t> t_
A = TR2[(l+cscy) (1+a2) - 2a2) Area of cone (or conical shell)
V = <% R3(1-a3)cot Y Volume of cone (or conical shell)
. -4 . .
E%R = AQOT*[l-e KV/A] Total radiative emission rate from flame
émax = =0.43 ﬁf At late stages, the flame may be limited
by lack of oxygen. 1In that case,
radiation loss must be limited also.
L] = . L] O*
PR min(Ep .« Epg)

Egs. by H.E. Mitler, June 1978
In file R; called by CALS

Description. This subroutine calculates the radiative heat transfer to the
portion of the walls and ceiling contiguous with the hot layer, from the
layer and the flame(s). The layer is approximated by a cylinder, with each
flame axially located and itself further approximated by a point source at
its centroid. This is essentially the same as in CFCIV. The equations are

derived in TR34, pp. 36-37.

Output Definition
2:¢FW = FQPWR (KO) Mean radiative flux incident on
f

extended ceiling, from flames. (In w/m2).
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¢LW = FQLWR (KR) Mean flux incident on extended ceiling
from the hot layer (in room KR)

Input required Found or
from COMMON calculated in Input From
E = TEPZR(KO) RDNP h = ZHLZZ (KR) LAYR
Hp = ZHPZZ (KO) PLUM K = 2ZULZZ(KR) ABSRB
R = ZRFZZ(KO) FIRE TL = ZKLZZ (KR) LAYR
Ly = ZLRZY (KR) INPUT T = PI DATA
L, = ZLRZX (KR) INPUT
Calculations Remarks
For each flame above an object KO:
8 = min(h/2,1/K]
H=H -R

p
If H20,

84 = min(H,0)

r = \/LxLy/'lT Equivalent ceiling radius
6o = tan™ 'H+r6 Mean acceptance angle for flame (by the

! layer)
r

=» sec o = VY1 + (H+61)
and

: ] _é_ s 0ol e-Khsec 0o . e-Kh i H

FC 2 o 1 + khsecBo 1+«kh m

= radiative power impinging on walls and ceiling, from fire(s).

If H<O,

82 = tan™ |H/r|=csc 82 = VI + (z/H) =2

-kh e-thscGz

e

Ee | Gineso——
FC 2 ) l+kh 2 1 +khcschz
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A=LL +2(L +L )h Area of walls and ceiling
XYy X Y .
¢Fw = EFC/A Summing over all flames, we get § ¢FW
V = hL L Volume of layer
Xy
g = 2V (Approximate) ity of 1
ATL L pproximate) mean opacity of layer
Xy
=1 - S S ~
e=1 exP(l-fO.lBC) Emittance of layer
= 4
S = T
RDNL

Equations by H. Mitler, May 1978
Modified 7/78, 10/80.
In file R; called by CALS

Description. This subroutine finds the net power gain of the layer, via
radiation. It is an improvement over the calculation shown on page 55 of
CFC III in that (a) it uses the emissivity of the layer, calculated in
ABSRB, (b) it takes the exposed vent areas into account. (c) A variable
beam length approximation is used for the emittance of the layer.

(d) The hot and cold walls and the fire(s) are explicitly taken into account.
This differs from the version used in Mark IV in correcting a small error,
and in using the LIMITS test. The equations are derived on pp. 37-39 of
TR34.

OutEut

O = TELZR(KR)
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Input required Found or
from COMMON calculated in Input From
Ta = ZKAZZ DATA 0O = SIGMA DATA
T, S ZKLZZ (KR) LAYR E = TEPZR(KO) RADP
Tw = ZKWZZ (KW, 1) TMPW z ¢FW = FQPWR(KW,1) RADW
hL = ZHLZZ (KR) LAYR £
h = ZHPZZ (XO) PLUM K = ZULZZ(KR) ABSRB
R = ZRFZZ(KO) FIRE B = ZBVZZ(KV) INPUT
W =L = ZLRZY(KR) INPUT hy = ZHVZZ (KV) INPUT
= ~
L =1L = ZLRZX(KR) INPUT by = ZHTZZ(KV) INPUT
Calculations
hs = h -h;,
hz = max(0,h4)
ha = min(hv,hz)
AV(KV) = haB Area of vent KV which is covered by
the layer
AV = ;;'AV(KV) Total vent area covered
= WLHL Volume of hot layer
A = 2(WL4-LhL-+WhL) Bounding area of hot layer
L = 4xV/A
€ = 1 - exp ———:E___ Mean emittance of layer
1+0.18C
A = -2 “ _ & (A_WT— 4
O n €0 AT} - (WL+A,) T% - (A-WL-A,) Tyl

Power gain of hot layer, taking only
the radiative exchange with "walls"

into account.

Next, for each flame we do the following:

H=h_ -R Distance from fire centroid to hot

layer
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r = /WL/7 Equivalent radius of ceiling

© _E [ H ]

E. =5 il sy surety 3 The part of the radiative output of
£ 2 s+ H the flame which is incident on the

hot layer
EFC = (A - WL)Z¢fw Flame radiation to extended ceiling, or
f going out the vents

é = ZEf - ﬁFC The part of the flame radiation ab-
a f sorbed by the layer

é = QLR + Ea Total radiative power gain of layer.

CNVW@1

'Equations by H. Emmons, June 1977.

In file C; called by CALS.

Description. This subroutine computes the convective flux to the walls
of a room; i.e., the convective heat transfer rate per unit area, from a
hot layer to the walls and ceiling of a room. The hot layer is assumed
to have the same temperature throughout and likewise the surface of the
walls and ceiling (referred to as ''walls') are assumed to have a uniform
temperature where they are in contact with the hot layer. This is quite
unchanged from the version in CFC III (listed there on p. 37). The
equations are developed on p. 48-49 of T.R. 34.

Output qﬂw = FQLWD(KW,1), qxw = FQLWD (KW, 2)

Input required Found or

from COMMON calculated in Input From

Ti = ZKWZZ(Kw,1) TMPW TA = ZKAZZ DATA
e = ZKWZZ(KW,2) TMPW b = Z0AZZ DATA

TL = ZKLZZ(KR) LAYR a = ZOAZM DATA

Calculations Remarks

he =b _ Outside heat transfer coefficient

hi = Min\a,b + (a - b) 100 Inside heat transfer coefficient

A | I -

'y hi(TL Ti) Heat flux to inside wall surface
M = -

Uy he(TA Te) Heat flux to outside wall surface
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CNVL

Equations by H. Emmons, June 1977.
Modified by M. Gilson, August 1978.
Modified by H. Mitler, Sept. 1980.
In file C; called by CALS.

Description. This subroutine finds the convective heat loss rate from the
hot layer (to the extended ceiling). The hot layer is assumed to be at a
uniform temperature as are the surfaces of the walls and ceiling in con-
tact with the hot layer. There is only one hot layer in each room. The
routine also assumes only one "wall" per room, and that side two of the
"wall" is in contact with the outside -- i.e., with quiescent ambient
air. This version differs from CNVL@l as given on page 59 of CFC III in
three ways: (1) the sign error in the definition has been removed. (2)
The parts of the vent areas contiguous to the layer have been taken into
account. (3) It is clear that the expressioﬁ formerly used for the rate
of heat injection into newly covered parts of the wall was overestimated.
Calculations show that it is of the right order of magnitude, however.
Therefore we take just half that amount. The equations are derived on

pp. 49-51 of TR 34.

Output

%m = TELZD

Input required Found or

from COMMON calculated in Input From
ht = ZHTZZ (KV) INPUT hL = ZHLZZ LAYR
h, = ZHVZZ(KV) INPUT EL = TELZZ LAYR
Bv = ZBVZZ(KV) INPUT EL = ZELZZ LAYR
L = Lx = ZLRZX INPUT Q{w = FQLWD(KW,l) CNVW
B = Ly = ZLRZY INPUT ﬁxw = FQLWD(KW,2) CNVW
Calculations Remarks

AW = 2(B + L)hL Area of heated (vertical) wall
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Calculations (cont'd) Remarks
D1 = hL - ht(KV)
D2 = max(O,Dl)
D3 = min(Dz,hv)
A =BD Area of vent KV which is covered by
v v'3
the layer
A = AW + BL - ZA Area of heated part of wall and ceiling
: v
v which is not covered by vents
BL = hLEL/EL Rate of descent of layer
t ..
q" = G, + 4" )de Convective energy stored in unit area
LW AW
4 of hot wall
» 1

(1] qn - =y - .

. A+ 4"(B+L-31'B)h  if E >0

ELW = . v . Energy loss rate by con-
q{wA if E < 0 vection from the layer

to wall
The prime on the sum over v indicates that we sum only over those vents

which are cut by the layer.

ELO = -ELw Rate of change of layer energy due to
convective heating (or cooling) of the
walls/ceiling.

TMPW@1

Equations by H. Emmons, June 1977,
Modified by H. Mitler, Sept. 1980.
This subroutine appears in file T, and is called by CALS.

Discussion. A wall of thickness 6 is exposed to radiative and convective
heat fluxes on its front and back surfaces. The time-dependent tempera-
ture profile through the wall is calculated numerically by cutting the
wall into slabs (parallel to its front surface), and solving the one-

dimensional heat-diffusion equation by differences. This subroutine is
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an improvement over subroutines HEAT(CFC IV) and TEMP@1(CFC III). HEAT

improved on TEMP@l by taking radiation from the cold walls into account,

as well as reradiation from the hot wall/ceiling itself. TMP@l improves

on HEAT principally in using a better expression for the absorptivity of

the layer, and restructuring the program more efficiently; it also in-

cludes LIMITS, etc.

See Technical Report 37, p. 51 ff, for a derivation of the equatioms.

Output for wall KW:

T1 = ZKWZZ(KW,1)

Input required

Found or

T, = ZKWZZ(KW,2)

from COMMON calculated in Input From

q{WD = FQLWD (KW,1) CNVW k = ZIJWZZ (KW) INPUT

4} g = FQLWR(KW,1) RDNW [ o = ZGWZZ(KW) INPUT ]

Q;WR = FQPWR(KW,1) RDNW or ¢ = ZCWZZ(KW) INPUT

QXWD = FQLWD(KW,2) CNVW and p = VMWZZ(KW) INPUT

dXWR = FQLWR(KW,2) RDNW Kk = ZULZZ ABSRB

d;R = FQPWR(KW,2) RDNW o = SIGMA DATA

At = DT MAIN hL = ZHLZZ LAYR

6 = ZNWZZ(KW) INPUT Ti =  ZKWZZ(KW,1) TMPW '

Ti(x) INPUT Initial temperature distribution through
the wall (generally taken to be constant,
at Ta)'

Calculations Remarks

an = V2abt Smallest permissible space increment

N=1+ &;%—} (integer part of)
n

0
§x = N -1

)
§x = 19
§x = 6

1 <N<20

N > 20

(calculated for the largest time in-
crement to be used).

N is number of points where tempera-
ture is calculated. n = 1 on inside
surface, n = N on outside surface.

Space increment actually used



-116-

Calculations (cont'd) Remarks

Computation parameters.

[}

[
~lor o
% %

Set Tn(O) = Ti((n - 1)8x) n=1->N

The calculation of the temperature distribution at time t + At given
the distribution at time t:

q; = QEWD + QEWR + q;WR Heat flux to side 1 (inside).

]} = N 1]) o1 S A1)

ay = dup + 4R + 4R Heat flux to side N (outside).
¢, = q" - oT" + e_KhL oT Net flux to inside of wall after re-
1 1 i a

radiation
= an L L %

[¢N ay + oTa oTe Net flux to outside of wall.]
Tl(t + At) =

Tl(t)(l - aAt) + aAt(Tz(t) + b¢1) Temperature on inside surface.
Tn(t + At) =

'Tn(t)(l - aAt) + 2%E(Tn_l(t) + Tn+l(t)) Interior.;emperature.
TN(t + At) =

TN(t)(l - aAt) + aAt(TN_l(t) + b¢N) Temperature on outside surface.
Ti = Tl Temperature of the inside surface.
Te = TN Temperature of the outside surface.

For marinite walls in the 1977 Home Fire Project test fires, we had

o w
Ti = 300 K k = ,134 oK
7 m2

6 =1 inch = .0254 m a=1.577 x 10
sec

* Through an oversight, Mark 5 takes ¢N= é§ -- i.e., reradiation is
neglected.
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TMPO@1

Eqs. by H.E. Mitler, July 1978; revised Sept. 1980.
In file T; called by CALS.

Discussion. This subroutine finds the temperature of the surface of an

object exposed to heating fluxes.

It is an improvement on subroutine

IGNT (which was used in CFC IV, which itself replaced TEMP12, in CFC III).

The radiation considered is from the walls, the layer, and any flames, to

a horizontal surface.

Heating or cooling by convection is also included.

The shorcut method used here is approximate, and avoids the need for

finding the temperature profile throughout the object.

assumed to be a semi-infinite slab.

The object is
The derivation of the equations is

found in Technical Report 34, p. 57-59. One of the improvements over

IGNT is the ﬁ;o is now taken to be the total flux from the walls -- i.e.,

including that from the '"cold" walls.
routine, RNWO@2.

layer, when the object is immersed in it.

That is obtained from the new sub-

Another improvement is the inclusion of heating by the
(Other changes improve the

numerical stability, but that only appears in the program, rather than in

the equations shown here).

Output

Input required

from COMMON
T = ZKAZZ
a
= EB
h = Z0AZZ
ho, hl =
p = VMOZZ
¢ = 2C0Zz
x = 2J0ZZ
N LI
9o = FQLOR
on -
éqwo = FQWOR

%&;o = FQPOR

T_ = 2ZK0ZZ(KO)

Calculated
in subroutine

Z0LZN, ZOLZM

INPUT
DATA BLOCK
DATA BLOCK
DATA
INPUT
INPUT
INPUT
RNLO
RNWO  rpNO

RNPO

Input

hL = ZHLZZ

hr = ZHRZZ

hs = ZHOZZ

TS = ZKOZZP

m™ = PI

Tw = ZKwWzz(1,1)
Ta = ZKAZZ

L = ZLRZY

W = ZIRZX

" From

LAYR
INPUT
INPUT
TMPO@1
DATA

TMPW

DATA BLOCK

INPUT
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Calculations Remarks
¢a = quo Q{O + ZQ;O - Radiative flux impinging on object KO
%) P from all sources
¢b = eb(¢a - oTs4) Flux, reduced by reradiation
¢, = h(T_-T), +h <h
b = b S a hL s r Net flux, after cooling or

' -
¢b + h (TL TS), hL + hs > hi heating by convection as well.
TL - Ta
' - =g
where h min[hl,h + (h o)( 100 ﬂ
H = ht - hL - hg Distance between object and layer.

If a small numerical fluctuation makes this flux erroneously negative,

near the start, use

6(Tw - Ta)
= >n - -
A S N 16(Tg - T)
1 +—

LW
instead.
For T < T + 5,

p(t) = ¢(t)// o(t")de' Rate of growth of net heating flux
For T > T + 5,
s a
L 10 80)
Phew o(t= At)
. $(t)
However, if S(t-at) = 0 or > 10,
use =L 1n Ts(t) - Ta instead
Prew ~ At T (t-at) - T_|’ ‘

p' = 0.8 p(t-At) + 0.2 p This moving average smooths out

new

fluctuations.
p(t) = max(0,p') Heat diffusion in the target is
assumed to only cool the surface.
T (t-at) - T

T () =T + VL [o(t-at) + ¢(t)]

2 /149.65 p(t)at
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TMPO@2

Eqs. by H. Emmons, June 1977.

Modified by H. Mitler, Sept. 1980.

The subroutine name is a contraction of Temperature of Object.
In file T; called by CALS.

Discussion. A slab of thickness 8 is exposed to radiative fluxes on one
surface, and is convectively cooled when it lies in ambient air, or
convectively heated if (when) it lies inside the hot layer. It is assumed
that there is no net flux to the other surface. This surboutine calculates
the time-dependent one-dimensional temperature profile through the ob-
ject in the same way that the wall temperature is found in subroutine
TMPW@l. It is a generalization and improvement over TEMPll in CFC III,
principally in two ways: first, the calculation can be done for slabs
with any values of the geometrical and physical properties. Second,
convective heating is permitted as well as cooling.

Note that when a slab is very thick, the equations below will
only permit quite thick elemental slabs, so that this calculation loses
accuracy. In a case like that, however, the thermal wave will probably
not penetrate the whole slab, and it is permissible to use a smaller
effective thickness, yielding greater accuracy in that region. When the
slab is thermally thin, it is not cut into slices at all.

The equations are derived in T.R. 34 on p. 51-54.

Output

TS = ZKOZZ(KO0)

Input Found or

from COMMON calculated in Input From
ZQ;O = FQPOR(KO) RNPQ Ta = ZKAZZ INPUT
4o = FQLOR(KO) RNLO ) RDNO | T_ = ZKOZZ(KO) TMPO@2
Zﬁao = FQWOR(KO) RNWO TL = ZKLZZ(KR) LAYR



Input (cont'd)

At = DT

8 = ZNOZZ(KO)
a = 2G0ZZ(KO0)
k = ZJOZZ(KO)
eb = EB(KO)
Ti(x)
Calculations

mein = V2aAt

M=1+ [G/mein]

N' = min(M,20)
N = max(1,N')

§x = 6/(N-1)
a = 2a/(8x)?
b = 8x/k

Ta(t=0) = T,[(n-1)6x]

¢ = Zq" + Zq"
a P PO W WO
8 = e (6 - 0T
b eb a s
LI =
h' = min[%l,ho
2h
h = °
g h'
T
T =02
g |t

From

MAIN

INPUT
INPUT
INPUT
INPUT
INPUT

* a9

T, - T
(hy - 0D\ 100
h +h_ <h
S r
h +h_>h
s = r
hL+hs'<hr

hy +h, > h

-120-

» I T (1,N)

)

Input From
ho = ZOAZN DATA
h1 = ZOLZM DATA
hL = ZHLZZ(KR) LAYR
hS Z ZHOZZ (KO) INPUT
hr = ZHRZZ(KR) INPUT

Remarks

Smallest permissible elemental slab

thickness (calculated for the largest
time increment to be used. Generally,
this has been the initial At, 2 sec).

The square bracket here means we take
the integer part of the fraction.

N is the number of points at which
we calculate the temperature -- i.e.,
we have N-1 elemental slabs. n =1
at the front (top) surface, n = N at
the rear (bottom) surface, and we
have at least one slice.

Slab thickness -- i.e., grid distance.

Initial temperature distribution

Radiative flux to (top) surface
Subtract reradiation
Heat transfer coefficient of hot gases

Heat transfer coefficients of gases,
as above. 10 w/m2 deg is taken for
air which is not quiescent.

Gas temperature when object surface
lies in cool gas (ambient air) and
gas (layer), respectively.
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o =0 - hg(Ts - Tg) Net heating flux to surface

If a small numerical fluctuation makes this flux (erroneously) negative

near the start, use

. 6('1‘w - Ta)
- o - -
¢ = equPO ¥ 1T+ w2 16(Ts Ta)’

P LW
instead.
Tl(t:+At) = (1-aAt)T1 + aAt(T2+b¢)

alt

Tn(t+At) = (l-aAt)Tn + 2 (Tn—l + Tn+1) n=2, ., N-1
TN = (l—aAt)TN + aAt TN-l
TS = Tl

In the equations just above, Tn = Tn(t) is the temperature

of the front face of the nth slab, at the previous timestep.

TIGN

Eqs. by H.W. Emmons, Oct. 1978.

Modified by H. Mitler, July 1980.

Extended by J. Rockett, Nov. 1980.

In file D; called by NWSTAT.

(Original name of this subroutine was IGNTEl).

Description. When a fuel surface is heated sufficiently (and sufficiently

rapidly), the fuel will begin to emit combustible gases (i.e. pyrolyze). If

further heated, it will ignite. This sub-subroutine neglects pyrolysis

prior to ignition and assumes that the fuel ignites at a specific temper-

ature, Tig' The time at which autoignition occurs (i.e., the time at

which this temperature is achieved) is found by linear interpolation

(of temperatures) when‘;hejéprface temperature first exceeds Tig' It

then changes the "state of the object" (ISTAT) label for that object.
Piloted ignition: An object will also ignite by contact with a flame.

When the horizontal separation between the edge of a flame and a target

surface shrinks to zero, the latter might ignite. Since a turbulent

flame moves around, we model it as a cylinder, for this purpose. We then

must examine their vertical separation. It is assumed that if the target
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surface lies below the lower surface of the burning fuel slab, it will
not ignite; but that it will whenever it is above that (but the bottom of
the target slab must not be higher than the flame tip).

OQutput

ISTAT ; changed from 2 (heating) to 5 (flaming) when 'I'ig is reached.

tig = TCHNG Time of ignition.

Required

input From

T(t) = ZKOZZ(KO) TMPO Note: KO = target object; I = flaming
object

'1‘18 = ZKOIG(KO) INPUT Temperature of (spontaneous) ignition.
We have been using 740 ©K, but this
is subject to change.

T(t-At) = ZKOZZP(KO) TMPO 92 = ZNOZZ(KO) INPUT

t = ZTZZZ MAIN xt = ZX0ZZ(KO0) INPUT

At = DT MAIN Ve = ZYO0ZZ(KO0)

xo = ZX0zzZ(I) INPUT ht = ZHOZZ (KO) INPUT

yo = ZYOZZ(I) Ri = ZRFZI(KO) INPUT

h0 = ZHOZZ(I) INPUT Rf = ZRFZZ(I) FIRE

91 = ZNOZz (1) INPUT tan y = TPSI(I) FIRE

Calculations Remarks

If T(t) > Tig’ set ISTAT(KO) = 5 Spontaneous ignition has taken place.

- T
t, =t - AtT(t) ig
ig T(t) - T(t-At)
Moreover, if T(t) < Tig’ but
if Ri + R > D and -el < ht - ho < Rgcoty +e2
= - 2 - Z
where D /(xo xt) + (yo, yt) s
then set ISTAT(I) = 5 Piloted ignition has occurred.

At
o =
and approximate tig by tig t 2
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VENT@2 and FLOW

Eqs. by H.W. Emmons, October 1978.
Modified by H. Mitler, Dec. 1980.
In file V; called by CALS.

Discussion. This subroutine finds the pressure difference Ap required
to satisfy mass conservation in the room. It assumes that there is
one room only, though it may (in principle) have any number of vents.

(CFC V has up to 5.) The associated sub-subroutine, FLOW, finds the mass

flow rates through each vent, given the layer density and height, the
vent geometry, and the pressure difference(s) across it. This method
of computing a vent flow uses the fact that the two-layer model of room
heating always applies pressure drops across a vent which are piece-
wise linear from sill to soffit.

The "pieces" are strips whose horizontal boundaries are the clearly
recognizable heights such as the sill, the soffit, the layer interface
height(s), and the neutral plane(s). For all other physical variables
X, we can find an explicit expression for X of the form X, = fi(;);
i.e., a fixed-point equation. This lends itself to solution by a number
of methods. For Apf, however, this cannot be done: it is an implicit
function of the ii's. Hence in this one case, we must resort to doing
some numerical work in a physical subroutine. The flow through each strip
is separately calculated and summed appropriately to get the total out-
flow ﬁu and the total inflow ﬁd (negative) through the vent. The net
outflow is m = ﬁu + ﬁd.

To use this flow formula requires the recognition of the positionm,
properties, and of how many strips exist in the vent. The calculation
starts with the pressure drop Apf at floor level, across the room wall
in which the vent is located. The pressure is specified in units of
pressure head in meters of ambient density air above the ambient pressure
at the same elevation (above ground level) (not in Newtons/mz, the
S.I. unit!). The distance from the room floor to the bottom of the

th

i~ strip is hi' h1 is always the height of the sill, hb' hz, h3, etc.

give the positions, in succession, of the strips as determined by
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appropriate heights, such as the soffit, ht’ the cold layer height

a = hR - hL’ and the neutral axis position, ho. We must also know, for
each strip, the value of Pys the gas density in the room at the heights
hi > h1+1. The net mass outflow rate m computed above will in general

not agree with the correct mass outflow rate m_, determined by requiring

R’
mass balance in the room:

R = Bout ~ ®in ~ EL/cpTa i A gmf (1
Agreement is obtained by adjusting Apf appropriately. [Eq. (1)

was used in subroutine ROOM in CFC III (see p. 89 there) to find ﬁi.]
Eq. (1) is derived on page 68 of Tech. Report 34. VENT@2 and FLOW

replace VENT@l, VNT1l, VNT2, VNT3, VNT4, ROOM, and REGM, which appear

in Mark IV; see remarks at the end of section V.

Output

L = TMUZZ (KV) o= + oy = TMRZZ(KR) = FX
= TMDZZ(KV) P, = ZPRZZ

Required

input from Found or

COMMON calculated in Input From

hb = ZHBZZ INPUT g =G DATA

ht = ZHTZZ INPUT pa = ZPAZZ = 0

hL = ZHLZZ INPUT ﬁL = TMLZZ LAYR

hy = ZHRZZ INPUT éL = TELZZ LAYR

Cy = CD DATA cp = ZCAZzZ DATA

B = ZBVZZ INPUT Ta = ZKAZZ DATA

pa = VMAZZ DATA ﬁf = TMOZZ (KO) FIRE

pL = VMLZZ LAYR

Pf = ZPRZZ VENT Value before iteration step.
Calculations.

The "cold" layer (in the room) has the same temperature and density
as the ambient air (outside the room), i.e., Ta and P, The hot layer
has the density L The pressure at floor level at room center is Pe

(in meters of ambient air above the ambient pressure P, at floor level
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outside); thus, the floor level pressure drop is Apf = Ps (in meters).

That is,

- patmo = Pg - Pressure drop from inside to outside
across wall (or vent) at floor
level (of the room).

Apf = Pfloor

Next, we must find the levels hi in the vent. This is done as

follows (refer to the figure at the right):

We start at the floor and travel upwards. h (ceiling)
Rg = K
The pressure drop across the vent remains - | -
constant until we hit an interface -- - h, h  (soffit)

i.e., a density discontinuity. So long ~

as there is no hot layer on the other

side of the vent (as is the case here),

- 3 (sill)
this will happen at height a = hR - hL' ¢ hR hL hb
Now, we define: l
hl = hb Bottom of first f
"piece" (strip) is at (floor)
vent sill.

If, as in the case shown in the figure, a > hb’ then Ap at the sill
equals Apf, and evidently h2 = qa, But if a < hb’ then the pressure
difference at a height z above the floor is (in these units)

Ap(z) = pe + (z = @) (o, - P) for z > a, (2)

Pa

and at hl = hb’
8p, = Ap(h,) = p. + (h, - a)(Pa ~ %)
1 "1 f 1 =

Pa

for a < hl'

ho is the neutral plane height -- from eq. (2),

0= tp(h) = p, + (b - ) (2D
P, Pg o a
Then so long as ho > hb’ h2 = min(a,ho,ht).
If ho <h, h2 = min(a,ht).
If h2 < ht’ then there must be an h3, etc. and we continue to find all

the hi until ht is reached. Thus denoting the position of the piecewise
linear interfaces in the vent as hi from the sill on up, eq. (2) permits

us to write
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(b =-90)
a
Api+l =Api Sl e— (hi+l - hi) ?rgssure drop at the top of a strip
a i in terms of that at its bottom;
p is the interior density.

Note that (2) will become more complicated when (a) the lower layer is
allowed to heat up above ambient, and (b) when the vent connects two
rooms, with a possible hot layer in the second room.

Now that the strips are determined, the flow through the ith strip
of the vth vent is given by

3/2 3/2
|apy 177 %= [8p, | lap; o |+ /Tap, 2o T + lap, |

m, =G — =G (3)
i Cifapy, T-Tap T i Ylsp [+ /Tap 1
2
where Gi (sgg Api)ECdB(hi+l - hi)v’ngpa , (4)
pa if Api <0 o} above the interface
p = and py =
Py if Api >0 P, below the interface

The flows are calculated in this way for each vent in the room, and then

summed :
R
m z L 5 L. Outflow from hot (upper) layer
m, =I"m =ZIn Flow of lower layer (d stands for
d i dv " n
v down").
and m = m + my = L L

The sums are over all vents and all strips in each vent; a single
prime indicates that hot (out-)flows only are to be included; a double
prime indicates that we must include only cold flows.

Note: ﬁj > 0 means outflow, ﬁj < 0 means inflow; j = i or d or u.

The above level classification and flow calculations are made for
Ap; and Ap. + €, for which the net flows are m(p;) and m(pcte), res-
pectively. Then the value of Apf is linearly adjusted to produce ﬁR’
as given by eq (1). The obvious way to do this is to set

(Apf)adj bp, + ﬁ(Pf+€) = ﬁ(pf)e (5)

This is precisely what the Newton-Raphson method gives, if we define
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£(p,) = By - B(py)

and ask for a zero of f(x). However, because m o¢/p (rather than being
linear or of a higher power), the correction term thus added to the ini-
tial guess Apf is twice as large as it ought to be, and thus use of

eq. (5) frequently leads to instability. A better expression to use is
thus

hy - @(py)
pe = (8pg) = dpg ¥ £ 2 . (6)

adj 2 m(Pf"'E) - m(Pf)

The corresponding flows will (to first order) be given by

- [ﬁn'w B u.luv] -
Bwv - Puv + (pf - pf)

and ' - (N
Tav - Tav Pg = Pg

ﬁuv is the upper flow found in the vth vent with Ap = P> and ﬁ;v is

m

™

that found with Ap = p, + €. Similarly for ﬁdv'

So long as the layer thickness is smaller than any of the room

vent transoms -- i.e., ‘
hL < min'h (v)l, (8)
vit
then we must have m =0 (9)
and ﬁd = ﬁlR ’

immediately. It also follows that
2

. [(2mp
pp = (sgn EL)(SEI) (10)

(although this is of small importance, since we only need the pressure
difference in order to obtain m;). The use of eqs. (9) and (10)
eliminates the need to use eqs. (3), (6), and (7) -- i.e., to call FLOW
twice, etc. Moreover, it will not be necessary to iterate repeatedly
in order to have Ps (generally the most sensitive variable) converge --
it will only be necessary that mR (and therefore EL mL, and m )

converge to the appropriate accuracy.
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LAYR@4

Equations by H. Mitler, June 1979, modified, Dec. 1980
In file L; called by CALS

Description

Aside from the CaCO3 filler, the chemical composition of flexible
polyurethane foam #7004 is Ca_ ,so H7 26 No_21 O. A. Tewarson has measured
the mass fractions of smoke, CO, CO2, and unburned hydrocarbons emanating
from the burning foam (exclusive of the inert CaCOs filler). These are,

respectively, fé, £ and The smoke is a combination of soot and

L L]
co’ fcoz ! fac
condensed hydrocarbons. For our purposes we can add the (small) gaseous

hydrocarbon fraction féc

than CaCO3) upon combustion. The version of LAYR in Mark 4 (LAYR@3) is

to f; as well. We assume no ash residue (other

identical to the LAYR@2 subroutine used in CFC III, but it also calculates
the CO, CO2, and smoke concentrations in the layer, using these data. Since
the data are given via INPUT, the calculation applies generally, rather than
just to PU 7004 (though that is the default). The present version has the
following further changes: First, we use mass fractions relative to the
(combustible part of the) foam, rather than to the carbon mass. Second, we
can infer the approximate mass of water vapor produced in the (incomplete)
combustion, and have therefore calculated the H20 content in the layer.
Finally, of course, we have included LIMITS here. The derivation of the
equations for oxygen concentration is given on pp. 19-23 of T.R.34. The
concentration of smoke calculated here is about 15% higher than it is in
reality, because the deposition of soot on ceiling and walls has been

neglected here; see comments under ABSRB3.

Output

I:LL = ZMLZZ EL = TELZZ YO = ZYLOZ YCO: = ZYLDZ
mL = TMLZZ hL = ZHLZZ Yw = ZYLWZ YS = ZYLSZ
EL = ZELZZ TL = ZKrLZ2Z YCOEZYLMZ
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Input Required - Originating in Input Required Originating in
from Common Subroutine: from Common Subroutine:
rﬁp = TMPZZ (XO) PLUM 51; = TMPLU(KO) =0  PLUM
'p = TEPZZ (KO) PLUM -:I\f = -TMOZZ (KO) FIRE
ée = TEUZZ (KV) VENT C = 2zCAZZ INPUT
Ec = TELZD(KR) CNVL L = Lx = ZLRZX INPUT
éR = TELZR(KR) RDNL W =L = ZLRZY INPUT
r?ze = TMUZZ (KV) VENT T, = ZKAZZ INPUT

p, = VMAZZ INPUT

X = CHI INPUT
Yo = XGAMAS INPUT For the P.U. foam, Ys=9.85
Y = XGAMMA INPUT For this foam, y=14.45
f! = FCO INPUT Tewarsen's results for P.V. foam 7004
co implies £' =.0133

13 co”
' = FCO2 'o=1.
Coa CO INPUT For 7004, f(:03 1.504
fv" = FH20 INPUT For 7004, fv',=0.7l35
fé = FS INPUT For PU # 7004, f'=0.241, where we have
included condensed and uncondensed hydro-
carbons as well as soot, for Mark 5.
Calculations
?L = ?p - ?e+Ec+ER Rate of change of energy of hot layer
m = mp-me Rate of change of mass of hot layer
t o
EL IO EL dt Energy of hot layer
m. = ft . dt Mass of hot layer
L~ 0™
lE:L
hL = IWCT P Depth of hot layer
a"a
E:L

TL = mL-—c Temperature of hot layer

n, = T g +m10. . . 22 of T.R.34
My = Meest [(yx+1)m; +m 10.2318/¥,  See eq. (25), p. 22 of T
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L] L] - L] .' L]
. 0.2318[mp+mf(ysx+ 1)] Yome , ma imt
m = .
ox . L] Ys L] YS L] L] L]
o. —— — - V — ]
2318(mp+mf)(1 Y) Yo[ma Y + me] R ma<mt

The first equation (just above) applies when enough oxygen is entrained
(including, possibly, a contribution from the part of the plume in the hot
layer) to allow combustion up to the open-air limit X. This is eq. (22),

found on page 19 of T.R.34. When ﬁ;==0, the criterion m' (see

<m
. a test
second equation) becomes O0<m . But that is just the criterion for

test
oxygen starvation.

When ﬁ;>'0, the second equation corresponds to the case where oxygen
starvation occurs even when (non-vanishing) oxygen entrained into the plume
from the layer is included. This equation, incidentally, is eq. (27), on
p. 22 of T.R.34.

NOTE: These three equations are unnecessarily complicated, and will be fixed

in later versions!

- t ° ] [} 3
moy = Io mox(t ) dt Mass of oxygen in the layer
Yo = mox/mL Mass fraction of oxygen in the layer
. - -o ' _ . .
co mffco meYCO Rate of change of CO mass in the layer
L] = L o - L] ' - L] .
mco2 0.0005(mp4-mf) mffc02 meYco2 Rate of change of CO2 mass in the layer
m = -m £'-m Y Rate of change of smoke mass in the layer
s f's e’s
- t ° 1 ] 3
mCOz(t) IO mcoz(t ) dat Mass of CO, in the layer
YCO = ZYLDZ = Mg (t)/mL(t) Mass fraction of COz in the layer
2 2 (initial value = 0.0005)
t e , , .
= C t 1
Moo (E) JO mo(t') dt Mass of CO in the layer
YCO = ZYLMZ = mco(t)/ML(t) Mass fraction of CO in the layer

(initial value = 0.0)

ms(t) = f; ﬁs(t') dt! Mass of smoke in the layer
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Ys(t) Z ZYLSZ = ms(t)/mL(t) Mass fraction of smoke in the layer
(initial value = 0.0)

ﬁw = - iff&-ﬂer Rate of change of water mass in the layer

m,(t) = Jg ﬁw(t') dat’ Mass of Ha0 (gas) in the layer

th) = mw(t)/mL(t) Mass fraction of Hz0 in the layer

(initial value = 0.0)

ABSRB1

Equations by H. Mitler, July 1979
In file L; called by CALS

Description

This subroutine calculates the infrared absorptivity of the hot layer.
In this version (used in CFC III), we approximated it by a simple exponential
fit to the data on the smoke attenuation coefficient, obtained from the third
full-scale bedroom fire test (1975), channel 153. 1In CFC III, however, we

used its reciprocal, the absorption length A,

Output Input Needed From
from Common Subroutine

K I ZULZZ (KR)
t = 2TZ222 MAIN

Calculation

K = 0.001 e0.0286t
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ABSRB2

Equations by H.E. Mitler, July 1979
In file L; called by CALS

Description

This subroutine calculates the infrared absorptivity of the hot layer.
We assume the absorption coefficient is in fact grey and due mostly to the
smoke concentration in the layer. The proportionality constant used in the
equation below was obtained by comparing the IR absorptivity as measured in
the July 6, 1977 full-scale fire test (channel 126), with the smoke concen-
tration calculated by LAYRZ4 in a standard run. (Note, however, that that

concentration is too high--see comments in LAYR@4 and ABSRB3).

Input Needed From
Output from Common Subroutine
K = ZYKZZ (KR) Ys = ZYLSZ (KR) LAYR
Calculation
K = 265Y
s
ABSRB3

Equations by H.E. Mitler, Dec. 1980
In file L; called by CALS

Description

The absorptivity of the hot layer is here found from first principles
(albeit with simplifications). The absorption coefficient of soot, ko' is
found from its value at 0.94 microns. The absorptivity of H20 and CO2 is
found in a wide-band approximation. The soot concentration calculated by
Mark V is a bit too large. This is so because about 14% of the soot is
deposited on ceiling and walls, but that has not been taken into account in

Vg For purposes of this calculation, therefore, the calculated Vg
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(mass fraction of soot) is multiplied by 0.857 (the soot mass equation in
LAYR will be modified correctly in version VI).
ABSRB3 calls subroutine EMSVTY and its associated sub-subroutine,

which do most of the work.

Output

K = K_+K_ = ZUL2Z (KR)
s g

Input Needed From .

from Common Subroutine Description

i = 2YLiZ LAYR Mass concentration of species i
in the layer. i=0,D,M,S (for
oxygen, CO2, CO, and smoke,
respectively) .

T, = ZKLZZ (KR) LAYR Layer temperature (in °K)

Calculations Remarks

ko = 1.3147 (‘85;) ys/TL This gives the absorptivity of the

=1.1266 x 10 ys/TL soot (to 0.94 u radiation).

g=1I"—-= +
{ My 32.000 44,011 28.011 18.016

o' = z"yi = y(oz) + y(COZ) + y(co) + y(HZO)
i

L = ,035555 + 0 - ¢'/28.016

y(C0,)
PCO2 = ———— Partial pressure of CO2 in the layer,

44.0112 in units of atmospheres.
y(HZO)
PH20 = 18,0167
Then we CALL EMSVTY (ko’ 1, TL’ PCO2, PH20, EMISS)
This returns the emittance of a unit-path-length layer,

¢ = EMISS. Then
k = -1n(1l-€). : Total absorption coefficient of layer.

Partial pressure of H20 in the layer.
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EMSVTY

(also SOOT, DLECK, PENTA, CHEBY, EGAS, and SCRTCH).
Eqs. by Ashok T. Modak, July 1978.
Called by ABSRB3.

Description. This subroutine computes the emissivities of isothermal and
homogeneous mixtures of soot, COZ’ and HZO at a total pressure of 1 at-
mosphere. The accuracy of the calculation is better than 5% as compared
with spectral calculations and experimental measurements. The limits of
validity are 300 to 2000 °K, a gas partical pressure range 0 to 1 atmos-
phere, and a pressure-pathlength of 0 to 5.98 atm-meters. Each call on
EMSVTY takes 11.85 ms. of CPU time on an IBM 370/158.

Output Description
e = EMISS Dimensionless emissivity (emittance) of the
mixture.

Input needed

(from COMMON) Source Remarks
k = ZKLED ABSRB3 The absorption coefficient of soot at
° a wavelength of 0.94 u (in m71).
L = PATHL ABSRB3 Mixture pathlength (in m). Must be
> 0.
T = ZKLZZ LAYR Gas temperature (degrees Kelvin). We

must have 300<T<2000.

Partial pressure of CO, (in atmospheres)
in a gas mixture at a %otal pressure
of 1 atm. Must have 0<PC02<1.0. For
PCO2 ABSRB3 PC02<.0011, PCO02.L<,0011, and PCO2.T.
>5.98, the contribution of CO, to
the mixture emissivity is set equal
to zero.

Partial pressure of water vapor. Same
PH20 ABSRB3 remarks apply as for PCO2. Moreover,
we must have PCO2+PH20<1.0.

Calculations
It operates by making a number of calls to subroutines and functions.
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EMSVTY is called with the arguments (ko,L,T,PCOZ,PHZO,EMISS). It im-

mediately calls sub-subroutine

SOOT(kO,L,T,Té), which returns TS the

soot transmissivity.
Subroutine SOOT utilizes sub-subroutine PENTA, which computes the penta-
gamma function (because the spectrally integrated emissivity of a path-

length L of soot is given by

A k TL
(3) 0.0
€ T 4 v 1+——¢
2
where w(3) is the pentagamma function; Ao = 0.94um, and C2 is the second
Planck constant. See reference (31)). PENTA uses ASYMP, a sub-subroutine

which computes the asymptotic expansion for w(B).

In obtaining the argument for the pentagamma function, Modak uses the

(approximate) equation
Ak =7f ,
oo v
obtained from numerous correlation studies. I then note that fv is

trivially obtained from

= Y*
£, Yso/o

where L is the layer (gas) density, Y* the (correct) soot mass fraction,
and Pg the mean soot density. For Y* I use 0.857 Vg (see discussion for
ABSRB3), while for p the estimate 2 0 g/cm =2000 kg/m is reasonable.
Hence the expression for k used in the calculation section of subroutine
ABSRB3.

Having Ty we immediately get

€ =1-1.
s s

Next, Eg is calculated by FUNCTION EGAS, which computes the emissivity
(emittance) of a given pathlength L of a mixture of CO2 and HZO at

temperature T:
sg = EGAS(L,PC02,PH20,T)

This function itself calls-sub-subroutine SCRTCH, which gives the separate
contributions of CO2 and HZO to Eg’ and the FUNCTION DLECK, which computes
the 2.7 and 15u overlap correction for mixtures of 002 and HZO‘ This is

computed by using a temperature-adjusted version of the overlap correc-
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tion factor suggested by B. Leckner(30).

Finally, subroutine SCRTCH also calls sub-subroutine CHEBY, which
gives values of various Chebyshev polynomials (used in curve-fitting,
above) .

The reader interested in the extensive details of this calculation
should look in references (22), (30), (31), and the listings of these
subroutines, in Appendix D.

PLUM

Eqs. by H.W. Emmons, June 1977.
Modified by H.E. Mitler, July 1978.

Description. This subroutine calculates the dimensions of the plume
above the fire and the mass and energy transported by the plume into the
hot layer. The density and velocity profiles are Gaussian, and the
equations essentially those found by Morton, Taylor and Turner (ref. 20),
for a point source of heat. This formulation assumes an area source

of heat of given radius by taking a virtual point source at an appro-
priate distance below the fire base, and subtracting from the resulting
mass flux the amount of air which would have been entrained between the
vertex and the fire base. The plume is assumed to stop at the layer
interface. The entrainment coefficient a is assumed to be constant.

The equations are discussed more fully in Tech. Report 34, pp. 10-13.
Except for minor programming modifications, this is still the same as
PLUM@2 in CFC III.

Output for each plume (KO):

hp = ZHPZZ(KO) ﬁp = TEPZZ(KO)

ﬁp = TMPZZ(KO) ﬁé = TMPLU = 0 in this subroutine
Input required Found in
from COMMON subroutine Input From

ZCAZZ DATA BLOCK

hR = ZHRZZ(KR) INPUT cp



Input (cont'd) From
hF = ZHOZZ (KO) INPUT -
hL = ZHLZZ(KR) LAYR

R = ZRFZZ(KO) FIRE

g =G DATA
Ef = TEOZZ(KO) FIRE
Calculations

h = hR - hF -h

P L
x = R/1.2a
H =h +x
P P
b =1.2aH
= G 2
Co ZSgEf/48m cpToDo
_ 1/3
u = (Co/Hp)
1/3
ug = (CO/x)
.o 2 2 . .
mp = ﬂDo(b u-R uf) e

E =fcT —-E. -E

P PPoO f PR
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Input From

Ta = ZKAZZ DATA

Pa = VMAZZ DATA

if = TMOZZ(KO) FIRE

EPR = TEPZR(KO) RDNP

a = ALFA (=0.1) DATA
Remarks

Height of plume
Distance of virtual point source below
base of fire

Height of augmented plume -- i.e.,
distance between virtual point source
and layer

Plume radius at layer

A convenient coefficient

Axial velocity of plume gases at top
of plume

Axial velocity of plume gases at fire
base

Net mass flow into layer (augmented
by pyrolysis fuel mass)

Convective energy flow rate into layer
due to mass transfer from the plume

Subroutines ROOM, VENT@1l, REGM, and VNT4 are only valid for Mark 4, and

do not exist in Mark 5 any longer.

Any user in possession of a Mark 4

tape who wants the documentation for these (former) subroutines, please

contact the author.
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VI. PRESENT LIMITATIONS OF MARK 5

In this section I will discuss some of the parameter limits of the
program, as well as its limitations. Like the program itself, its limitations
fall into three categories: mathematics, physics, and structure. From the
point of view of mathematics, it has the same difficulties every other
program designed to solve a simultaneous set of nonlinear equations has --
that is, there is a small percentage of cases where it fails to converge,
at some point in the run. A more serious difficulty is where the "convergence"
is spurious; this is more serious because we cannot always tell that the
answers are incorrect. (On the other hand, the close coupling of the equations
sometimes will lead to a "healing'" of incorrect answers! That is, the
errors do not always propagate.)

Both of these difficulties are illustrated by the following set of
runs: for a run with the standard fuel (and target) in a huge room --
of dimensions 400 x 600 x 400 m -- the layer temperature appears to take
a sudden jump at t = 80, from 300.00 to 307.04 OK, and the pressure at the
floor jumps simultaneously to the clearly spurious value Ap = 100 meters
(the 1imiting value it can take on). For a smaller -- but still very
large -- room, of dimensions 200 x 300 x 200 m, TL suddenly jumps to 305.44
[and Ap to 100] at t = 200. For the case where the room dimensions are
(Lx, Ly’ Lz) = (100, 150, 100) m, the calculation is quite reasonable
until t = 320, at which point Ap goes to 100. Examining the limits of
validity from the other direction, we find that for rooms of dimensions
(100 x 150 x 50), (100 x 150 x 75), and (100 x 150 x 85), there are no
difficulties, out to 500 sec. For 100 x 150 x 95, however, we do not get
a spurious result, but fail to converge at 348.7 sec, though all the
answers up to that point appear to be reasonable. A systematic investigation
of the results for rooms of different dimensions reveals no simple rule
by which we can determine beforehand which calculation will go through and

which not, unfortunately.
Next: a gas burner with R = 0.8 m and ﬁgas =710 gm/sec runs through

(fairly reasonably) out to 500 sec. Yet for R = 1.0 m, the calculation fails
to converge at t = 21.56 sec, and we are forced to terminate the run.
Again, a pool fire (with P.U. foam) of radius R = 0.8 m in the

standard room runs quite reasonably out to 180 sec. However, it then
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runs into trouble beyond 181.5 sec -- it will not converge.

Each of these cases, as we can see, is fairly extreme -~ yet for
the last case, the difficulty only arose well into the fire, when every-
thing should have been settling down nicely.

The nature of the difficulties is varied. One possible source
is our convergence criterion. It is a reasonable one, but certainly
does not guarantee that we have indeed converged to the solution of
our equations. This occasionally leads to apparent ''convergence'" to
incorrect values, and then extrapolation to a new timestep will lead
to a very poor set of approximations, possibly leading to failure to
converge further. At other times, subroutines may have been written
in such a fashion that the program will loop indefinitely, at some point.
Finally, we may simply be in a region where the Jacobian is either
singular or very ill-conditioned. Evidently each of these requires
a different method of resolution, but they all lie outside the scope
of this document. Of course we cannot rely on the person who writes
a subroutine to be able to anticipate every possible numerical diffi-
culty which his subprogram could lead to. We must therefore rely on
very robust numerical algorithms. Some tricks which will sometimes
sidestep a numerical difficulty are discussed in section VIII, Use
of the Program.

One structural difficulty, of a fairly trivial nature, is that the
INPUT routine is not yet sophisticated enough to realize when inconsistent
input is being fed to the program. Thus, it is easy to inadvertently
put an object outside of the room (which will lead to a "lethal"
arithmetic error), for example.

Another structural limitation is the total number of vents and
objects which can be input. In order to put in more, the program
would have to be recompiled with larger DIMENSION statements.

Finally, the program is not as flexible as it might be -- for
example, it does not permit input of € = TOLER, should we want to change
it from its present value of 3 x 10-4. Nor does it permit switching
to a Jacobi algorithm. The initial apex angle of the cone is still
fixed at 30°. The program is not as modular as we would like, either.
Nor can we make a series of runs where only one parameter takes on

several values, without having to reinput everything.
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The limitations of the physics are the most obvious, perhaps.
Among these are: no provision for-vents in floor or ceiling; no provision
for heating the lower gas layer (mostly by mixing with the hot layer
at the vent, presumably); the limitation to a single room; no criterion
for flashing of the upper layer. The convective heat transfer co-
efficients are too crude. These and many more are of course being
planned for Mark 6 and later versionms.
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VII. COMPARISON BEIWEEN THEORY AND EXPERIMENT.

In order to validate a theory or a model, we must of course be able
to predict, within specified limits of accuracy, the results of an
experiment. A great many full-scale fire tests have been run, but only
a small fraction of those have been well instrumented. In 1977, Factory
Mutual Research Corporation ran a series of seven thoroughly instrumented

(32) whose results could then be compared with our calculations. A

fires
comparison of two of the tests with predictions made by CFC III was reported
by Emmons(4). A comparison between calculated and experimental results,
using Mark 5, for tests 0, 1, 2, and 6 is given in Mitler(33) and

Mitler & Rockett(38), A very abbreviated version of those two papers

will be given in this section. The '"standard configuration' was a room

8' x 12' x 8', with a 30" x 80" doorway as vent, which contained two
objects. Object number 1 was a 5' x 5' x 4" slab of polyurethane foam
(#7004) 1in one corner of the room; its top surface was 2 ft. above the
floor. Object number 2 was a 4' x 1' x 4" slab of the same material,

10" higher and in a facing corner (see fig. 35). Slab #1 was ignited at

its center, and the progress of the fire observed. The appearance of

the room during the fire, and some of the variables involved, are shown

in fig. 36. This case was run (at Factory Mutual's test facilities) three
times, and the tests were labeled # 0, 1, and 2. Test #6 was identical,

but had a window replacing the doorway.

First, it must be noted that the experimental results fluctuate
substantially. Thus, tests 0, 1, and 2 were meant to be identical. Yet
the layer height recorded in the three cases varied substantially --
see fig. 37.

The pyrolysis rate had similar variations -- indeed, the fluctuations

Target |

Slab |
Open

#2 I

Initial fuel Doorway EI #1 !

o M AN |

Slab N N

Fig. 35. Schematics of the standard configuration for fire tests 0, 1,
2. Top and side views, respectively.
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for each of the three runs were very large for t < 100 to 150 sec. With
such differences among supposedly identical runs, it is clear that we cannot
have any better agreement between a theoretical calculation and any single
run. ‘

Second, the way the raw data is handled also affects how well "experiment"
and "prediction" agree. Thus, "the" mean hot layer temperature was
calculated in different ways by us and by the Factory Mutual group: they took
the mean hot layer temperature to be the average temperature (as measured
by six thermocouples) at a given height -- 30% of the room height down
from the ceiling. That gives the solid curve in fig. 38. We calculated the
mean layer temperature and depth simultaneously, from the (vertical) tempera-
ture profiles as given by three racks of thermocouples in the room. That
result is given by the dashed curve in fig. 38 and is seen to deviate
considerably from the first curve; at their peaks, the temperatures differ
by 150° C -- this will lead, for example, to a factor of more than two
difference in the radiative emission from the layer, and a comparable
factor between prediction and experiment, therefore.

With these important caveats, we compare theory and experiment for the
standard run, in figs. 39-42. We see that the agreement is generally good,
except for the carbon monoxide concentration, as seen in fig. 41. The smoke
concentration was not measured directly, but the resulting emissivity of
the layer seems to be good, as the measured and predicted fluxes due
to the ceiling layer agree very well (fig. 42).

The predictions for test #6, where a window replaces the doorway, are
not quite so good, but are still acceptable.

Perhaps the poorest prediction we make is of the burnout of the fuel,
which was made ad hoc; this is not of great significance now, but clearly
has to be improved. The most puzzling question is why the layer temperature
is well predicted for most of the burn, but underpredicted later on. There
are several possible reasons, each of which involves some physics not
yet incorporated into the program (such as burning in the layer). Finally,
the CO concentration is badly predicted. This reflects our ignorance
of the relevant mechanisms, at present.

Aside from these points, the agreement is very good, and suggests

that much of the physics has been put into the program fairly well.
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(See discussion of Fig. 38 in text to understand why
"experimental" is in quotes.)
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VIII. USE OF THE PROGRAM.

The input and output.

As in the previous sections, I will first indicate very succinctly
the input that is needed and the output available. Then I will go into
details for those requiring a deeper understanding, starting with the ex-
planatory notes.

@

Data which user must supply for a run

@,

Room Length in the x direction(s) (in meters)
Length in the y direction
Height (in m)
Ambient temperature Ta (in degrees Kelvin)
Object(s): Number of objects (5 maximum -- i.e., 0 < No < 5)
For each -- its mass (in kg)
Location of center of exposed surface (x, y, height)

Size (a x b and its thickness 6, or R and 6)(4)

and(s) R
m

. For pools and burners, R = R .
ax max

Is it horizontal or vertical?
If vertical, what is the angle between the exposed surface and the
x-z plane?
Thermophysical properties of materials:
Thermal conductivity « (in j/sec m deg C)

Specific heat ¢ (in j/kg oC)

Mass density p (in kg/m3)

Heat of combustion Hc (in j/kg)
(6)

Is it flaming, or not?
If yes, is it a growing fire, a pool fire, or a gas burner fire?
For pools and growing fires, need

Heat of vaporization H_ (in j/kg)
For growing fires, we also need the

Spread rate parameter A (in m/sec)

For burner fires, need

Gas flow rate; mgas (in kg/sec)
If no, we need
Ignition temperature Ti (in °K)
| & (N

Mass fractions fi of CO, CO,, smoke, and Hzo produced in combustion .
Combustion efficiency ¥

Air-fuel mass ratio %
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Stoichiometric air/fuel
mass ratio Yg

Vent(s): Number of vents (1 < N, < 5)

For each, its size (height, width) and
its vertical location (''transom' height), ht'
Wall: Thickness Tt (in m)

Material parameters -- as under Objects.
Then the length of the run (in seconds) and the step size, At, in seconds.

Recall that the maximum number of variables permitted in this version
is 100. Hence the user must make sure that N < 100, where N is given
by eq. (1); the input for Mark 5 is not sophisticated enough to warn the
user if he should inadvertently choose a mix involving too many variables --
e.g. five objects and three vents.
Notes:
(1) If the user does not specify the input values, then a default set
will be chosen, corresponding to the standard run (see section VIiI). This
is done in blocks of information -- that is, we might accept all of the
default values except the set for the vent, which we change (to whatever
we want).
(2) Even though the program was designed for a multiroom structure, it is
still valid for one room only.
(3) If the room has only one door, then the lower left-hand corner of the
room (as we face the wall with the door in it) is the origin of coordinates.
The x-axis extends to the right, the y axis directly away, and the z-axis
upward. This constitutes a right-handed Cartesian coordinate system.
If the room has more than one door, the user must make some (consistent)
choice.
(4) a and b are the dimensions of the (assumed rectangular) object
in the x and y directions, respectively -- this assumes the object
is lined up with the room, of course. R is its radius if the object
is cylindrical. If it is rectangular, the program internally finds an
equivalent radius -- i.e.,

mRZ = ab.

(5) 1f the object can burn down its sides as well, then the total

maximum exposed area includes the area of the sides, as well, and we
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define--
for a rectangle, TR2 = ab + 2(at+b)6
max
for a cylinder, mR2 = mR2 + 27Re
. max

where 6 is the slab thickness.

(6) Note that we can start with several independent (simultaneous) fires.
(7) Because of the uptake of 02, the "fractions" of COz, etc., might be
greater than unity. Thus for the P.U. foam, the stoichiometric air/fuel
mass ratio is 9.84; interpreting x as completeness of combustion (for the
sake of simplicity), then since x ¥ 0.65, we have m(02) = 1.48mf, where

m(Oz) is the mass of oxygen which combines with the mass m_ of fuel vapors.

Thus the sum of mass fractions must be 2.48. g
Most of the input has a floating-point format -- that is, it must

have a decimal point. This is important, as on some systems, if the

user forgets to enter a decimal point, the machine will assume one

exists (at a place determined by left-justification of the number), and

accept the entry -- which will most likely be off by a few orders of

magnitude! For a few items (Hc, Hv)’ it must be in exponential notation --

thus, for example, .00094 would have to be entered as 9.4E-4. As has

been indicated above, the units are S.I.

Availability.
The user of the program will generally have it available on a tape,

in a number of FORTRAN files. These must be compiled and linked at the
user's facility. Once that's done, typing "RUN MARKS" will begin execution:
requests for information will appear on the screen, which the user
must supply, as indicated above. The program has been so written that
striking the RETURN key will give the default option (this is not
always true in BATCH mode). If this is not the case, or if an error is
made, the question will be reasked.

When all the required information has been input, the calculation
begins and proceeds to the end, or to where it runs into difficulties,
at which point it will state "YOU ARE IN TROUBLE. DO YOU WANT TO
CONTINUE?" The user has then to make a choice, and the correct choice
will soon become evident. Once the run has been terminated (one way
or the other), the computed information is in data file FIRE; at our
facility, it is FIRE.DAT, and can be retrieved by typing "PRINT FIRE.DAT".
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If another case is to be run, the user must again type "RUN MARKS5", and
begin all over again.

At our computing facility, we of course have a fully compiled and
linked program on disk, and can run problems immediately. We also
have Mark 4 on disk on a PDP 10 (at Aiken Computing Lab, nearby) and
this is accessible to users directly via the ARPA net. However, it is
not yet clear whether the latter facility will continue to be available,
and hence Mark 5 will not be accessible via the ARPA net, at least

for the present.

Running the program.
Execution begins with a request for "PROGRAMMER, RUN NUMBER" --

anything may be entered here; generally we write the programmer's initials
followed by a number -- e.g. HM105. Then an opportunity to type in any
comments at all about the run. Next is the apparently silly question:
"IS THIS BATCH MODE?" (Unfortunately, there is an (elementary) bug
in the program here, and if the response is '"yes'", then the user will very
shortly run into a difficulty which will prevent execution.) Then,
even for a standard run, there are eight more questions:

1. Do you want to change the physical subroutines?

2. Do you want a configuration other than the standard?

3. Output format?

4, Time increment between outputs to screen?

5. Ditto for output to disk data file?

6. Run length?

7. Basic time increment? (2 seconds is the default At)

8. Do you want to use the debugger?
Question 1 above is asked, because the user has a choice of subroutines
for the calculation of the surface temperature of objects, and for the
calculation of the absorptivity of the hot layer. Question 2 is self-
explanatory, and the appropriate input has to be typed in, as listed at
the beginning of this section. The output format referred to in question
3 is that to the disk (and hence to the printer), and the choices
available are discussed in section IV.7.

For question 4, the default interval is 20 sec, for question 5 it

is 10 sec. The default run length is 500 sec (Q. 6), and the basic

time increment At is 2 sec (Q. 7). When the answer to the last question
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(Q. 8) is '"no", the program recapitulates the input for checking, then

goes ahead and computes the fire.

The Debugger.

The debugger is available for programmers or skilled users for trackiné
down difficulties, should they appear. When the answer to question 8
above is '"yes'" (or <RET>), then eight further questions are asked:

When should the debugger cut in? How often should output go to
the TTY thereafter (again, 20 sec is default)? How often to the disk?
Should the message "leaving subroutine...'" appear every time the calculation
leaves a subroutine? (This option has very rarely been found to be
useful, and will probably be dropped). Should output be displayed after
each iteration? Do you want a list of the variables "in the system" at
every rescaling? Or, do you want just those entering or leaving '"the
system" (i.e., ICOR) upon rescaling? Finally, do you want these questions
reasked at a later time (and what time is that?).

Most of these questions, incidentally, are also in Mark 4, and are
displayed in a partial protocol on page 32 of the Users' Guide..., ref.
28.

We have found that the most useful option is the one which gives
the output after each iteration; this allows the calculations to be followed
in detail, and errors or difficulties can often be tracked down this way.

An interesting use of the debugger is the following: if a run "hangs
up"' at some moment tc’ due to a numerical instability, sometimes it is
possible to sidestep the trouble merely by invoking the debugger at a time
earlier than tc, which was skipped over. Thus, if tc = 308 (say), and
there were calculations made at (say) t = 150 and 152 (but not at t = 151),
then invoking the debugger at 151 forces an extra calculation there; the
resulting numerical differences thereafter might succeed in bypassing
the trouble at 308. A similar trick is to change one of the parameters
in the calculation slightly -- s physically insignificant change in room
size, for example, might avoid the difficulty. Of course it is better
not to have such difficulties arise in the first place, but some 5%
of the time they do, nevertheless.

In order to examine various arrays or other calculations which are
not diéplayed, such as the matrix elements of a Jacobian, it is nec-
essary to have recourse to the more powerful debugging options generally

available via the operating system.
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Stoichiometric air/fuel
mass ratio Yg

Vent(s): Number of vents (1 < Nv < 5)

For each, its size (height, width) and
its vertical location (''transom'" height), ht'
Wall: Thickness T (in m)

Material parameters -- as under Objects.
Then the length of the run (in seconds) and the step size, At, in seconds.

Recall that the maximum number of variables permitted in this version
is 100. Hence the user must make sure that N < 100, where N is given
by eq. (1); the input for Mark 5 is not sophisticated enough to warn the
user if he should inadvertently choose a mix involving too many variables --
e.g. five objects and three vents.
Notes:
(1) If the user does not specify the input values, then a default set
will be chosen, corresponding to the standard run (see section VII). This
is done in blocks of information -- that is, we might accept all of the
default values except the set for the vent, which we change (to whatever
we want).
(2) Even though the program was designed for a multiroom structure, it is
still valid for one room only.
(3) If the room has only one door, then the lower left-hand corner of the
room (as we face the wall with the door in it) is the origin of coordinates.
The x-axis extends to the right, the y axis directly away, and the z-axis
upward. This constitutes a right-handed Cartesian coordinate system.
If the room has more than one door, the user must make some (consistent)
choice.
(4) a and b are the dimensions of the (assumed rectangular) object
in the x and y directions, respectively -- this assumes the object
is lined up with the room, of course. R is its radius if the object
is cylindrical. If it is rectangular, the program internally finds an
equivalent radius -- i.e.,

TR2 = ab.

(5) 1I1f the object can burn down its sides as well, then the total

maximum exposed area includes the area of the sides, as well, and we
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define—-
for a rectangle, "R;ax = ab + 2(a+b)8
for a cylinder, mR2 = mR2 + 27R6
. max

where 6 is the slab thickness.
(6) Note that we can start with several independent (simultaneous) fires.
(7) Because of the uptake of 02, the "fractions" of C02, etc., might be
greater than unity. Thus for the P.U. foam, the stoichiometric air/fuel
mass ratio is 9.84; interpreting x as completeness of combustion (for the
sake of simplicity), then since x ¥ 0.65, we have m(oz) & 1.48mf, where
m(Oz) is the mass of oxygen which combines with the mass m, of fuel vapors.
Thus the sum of mass fractions must be 2.48.

Most of the input has a floating-point format -- that is, it must
have a decimal point. This is important, as on some systems, if the
user forgets to enter a decimal point, the machine will assume one
exists (at a place determined by left-justification of the number), and
accept the entry —— which will most likely be off by a few orders of
magnitude! For a few items (Hc’ Hv), it must be in exponential notation --
thus, for example, .00094 would have to be entered as 9.4E-4. As has

been indicated above, the units are S.I.

Availability.
The user of the program will generally have it available on a tape,

in a number of FORTRAN files. These must be compiled and linked at the

user's facility. Once that's done, typing "RUN MARK5" will begin execution:
requests for information will appear on the screen, which the user
must supply, as indicated above. The program has been so written that
striking the RETURN key will give the default option (this is not
always true in BATCH mode). If this is not the case, or if an error is
made, the question will be reasked.

When all the required information has been input, the calculation
begins and proceeds to the end, or to where it runms into difficulties,
at which point it will state "YOU ARE IN TROUBLE. DO YOU WANT TO
CONTINUE?" The user has then to make a choice, and the correct choice
will soon become evident. Once the run has been terminated (one way
or the other), the computed information is in data file FIRE; at our
facility, it is FIRE.DAT, and can be retrieved by typing "PRINT FIRE.DAT".
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APPENDICES

Appendix A. Notation.

It is usual practice fo use Fortran symbols in ways suggesting
common names and then to supply a dictionary of the symbols actually used.
However, a fire in a large building has a large number of geometric, com-
positional, and physical properties. To avoid arbitrary selection of symbols
for closely related things (eg. x coordinate of many objects) we have
selected a naming system which uses each of the six Fortran places for
preassigned purposes.

This results in labels which are not euphonious, nor universally
satisfactory: not every variable we want to use can be described according
“to our scheme. This is principally due to the FORTRAN limitation to only
six alphanumeric characters for a name; nevertheless, it has served us
reasonably well. I can do no better than to reproduce (with some minor
changes) the description given in CFC III:

The Fortran name of any quantity in COMMON will be selected as follows:

1 2 3 4 5 (6)

A. Position 1 is used for derivatives, with respect to:

Z nothing

a L]
T time 5t ° ( )

9 3 ) !
X,Y,W space 5% * 2y ’ 3z ° )

32
A area ax3y ( )" per unit area
33 .
V volume 5;3;52 , ()" per unit volume
F area and ——23—— )" --i.e., a flux
’ €.y
time 9toxady
d N .

S :g;:e an 3taxdyez ()" --4i.e., a source

D difference A; exact definition to be specified by the user

B. Position 2 is used for a physical quantity;

A area



-159-

width

specific heat
diffusion coefficient
energy '
view factor

thermal diffusivity
height

radiant intensity
thermal conductivity
temperature

length

mass

thickness

heat transfer coefficient
pressure

heat transferred
emissivity
coordinate

time

absorptivity

volume

z-coordinate

mole fraction (or x coordinate)

mass fraction (or y coordinate)

N < ¥ & < 1 n W O v 0 Z X ' R &+ @ 0" m o o w

nothing (or z coordinate)

C. Position 3 specifies an object, place, or direction
A ambient
down (lower layer, depth, mass flow, etc.)
fuel
hot layer
object (will include all objects, distinguished by subscripts)
plume
room
upper (layer, or depth, or mass flow, etc.)

vent

£ < ¢ ™ wvw O ° O

z-direction, or Wall
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X x-direction
Y y-direction
Z nothing

D. Position 4 specifies a composition variable.
B charring plastic

cellulose

carbon dioxide

soot

combustible gas (usually reported as "hydrocarbon")

hydrogen

inert ingredients

char

carbon monoxide

nitrogen

oxygen

plastic

smoke

water (or HZO vapor)

N £ v v O Z2 X U +H B & mm 9 o

none

E. Position 5 specifies special conditionms.

A ambient

=)

boundary condition

critical condition (user defined)
convection

outside

final condition

initial

maximum value

minimum value

radiation

sum

N O ”m Z2Z X H =" 0 0

none

F. Position 6 is normally left blank. However, it is also used as a
suffix for numerical handling:
@ (zero) or P: value at previous timestep

1 value on output from the current physical subroutine.
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This notation has performed well except for one purpose, namely the
transfer of heat or mass, in which it is desirable to indicate both the source
and destination of the indicated quantity. Since most of these quantities
are computed initially as fluxes we have made an exception to the above
rules as follows:

If the first character is F (flux: F, in position 1) then the character
in position 3 is the source of the indicated quantity while the character
in position 4 is the destination of the indicated quantity.

For constants of nature (e.g. g), mathematical constants (e.g. m) and
other universal quantities, the common symbol will be used (G,PI).

There are a number of input parameters (not variables) for which the
naming convection has not been used; e.g. ZKOPY, the temperature at which
pyrolysis begins, or ZKOIG, the temperature of ignition (for an object).
These are included in Appendix B.

Since a large building will have many rooms and each room will contain
many objects which heat, burn, produce thermal plumes, etc. most of the
variables are subscripted, each over a range (O—ni) selected by the user.

In the numerical subprograms, in which all variables are scaled to order
1 and named routinely X(I), the index I is set by the computer in the
range 0-N where N is the sum of all other ranges, i.e. N = ini.

This entire calculation in the physical subprograms is carried out in
SI units. For those who wish to input or output data in other units, a
special units conversion subprogram will eventually be developed. This
has not yet been done.

The dictionary which follows will illustrate the above rules and will
present all quantities so far used in CFC V. The dictionary also shows
the subscript character (if any), the name of the subprogram which is
responsible for generating values of that quantity, and the physical
units in which it is given.

Diptionéry B.4 also shows the subprogram names as currently used. They
are generally 4-character names followed by two numbers which are assigned
when the subprogram has been completely developed and put into the final
listing. Thus there can be up to 99 versions of each subprogram, which
seems like more than enpugh. (A subprogram developer should use the last two
characters for his own notation to distinguish a program under development
from those of proven value.)

The general Fortran notation is used for all input and output informatior

and all variables in common. However, inside of any subroutine any con-
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venient symbol can be used without regard for internal symbols in any other

subroutine, of course.

Appendix B.

Dictionaries.

B.1l: Variables.

We list the variables and parameters, together with their

symbol, the subroutine where each is calculated (or found), and a brief

definition.

FORTRAN
Symbol

ALPHA = o

ANGH(KO) = BH

ANGV(KO) = vy

BETA = 8

CD=cd

CHI(KO) = y
CP =¢

P
DT = At
DTINIT = Ato

EB(KO) = ey

Found

in

DATA

INPUT

INPUT

TMPO@1

DATA

INPUT

DATA

MAIN

INPUT

INPUT

Description

Plume entrainment coefficient (taken to be
0.1)

Angle which (plane) surface of object KO
makes with the horizontal (in degrees). At
present, if this angle is input as > 450, it
will be taken to be 90" -- i.e., a vertical
object; if < 45, it is taken to be 0° --
i.e., a horizontal object.

Angle which vertical surface of object KO
makes with the plane xz, i.e., the wall
running along the x-axis (in degrees) . See
fig. 27.

A convenient combination of parameters used
in TMPOgl: 8 = l/m
Vent flow coefficient (we use 0.68)

Fraction of combustion energy H actually
released in open-air burning.

Spgcific heat of air at STP (1004.0 joules/
kg C).

Size of current timestep. This increment
is in seconds.

Initial step size in seconds. This will
remain the maximum step size in the calculation.

Emissivity/absorptivity of surface of
object KO (unless otherwise specified, we
take e = 0.98).
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FCO(KO) = féo INPUT Mass fraction of (combustible
part of) object KO evolved as CO,
when it burns in the open.

FCO2(K0O) = féOZ INPUT Mass fraction of object KO
evolved as C02, when it burms.

FH20(KO) = fﬁZO INPUT Mass fraction of object evolved
as HZO’ when it burnms.

FS(KO) = f; INPUT Mass fraction of object KO evolved
as smoke (C and condensed hydro-
carbons), when it burms.

FQLOR(KO) = q! RDNO, Radiative flux to surface of

LO X
=9 RNLO object KO, from the hot layer in
Lo the enclosure (w/m<).
FQLWD(KW,JSIDE) = CNVW Convective heat flux to side JSIDE
o .1 of wall KW, from the hot layer
A wp’ 9 awp °F *Lup’ *AwD (in w/m?).

Thus FQLWD(KW,1) is the flux from

the inside of the room to the inner
part of the wall/ceiling. FQLWD(KW,2)
is the flux (from outside) to the
other side of the extended ceiling.

FQLWR(KW,J) = ¢ »9 RADW Radiative flux to side J of wall KW,
LWR” "AWR
from the hot layer (w/m").
FQPOR(KO) = ﬁ;o RDNO, Radiative flux to surface Qf object
RNPO KO, from the flame(s) (w/m”).

FQPP = ¢ff RNFF Flux from flame-flame interaction.
Non-zero only if target is also
burning.

FQPWR(KW, J) = E Srw RDNW Radiative flux to side JSIDE of
wall KW, from the flame(s) (w/m").

FQWOR(KO) = &ao RDNO, Radiative flux to surface of object

RNWO KO, fromzthe hot walls and ceiling
(watts/m").

FQPP(K01,K02) = ¢12 RNFF When objects KOl and KO2 are both
flaming, this is the flux impinging
on the base of KO2 due to absorption
by its flame, of radiation from
KOl's flame.

G data AccelEration due to gravity (9.8
m/sec”) .

PI = DATA m = 3.141592...

BLOCK
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FORTRAN Found

Symbol (cont'd) in Description

QF (KO) = H_ INPUT Heat of combustion of material
making up object KO (in joules/kg).

QVAP(KO) = Hv INPUT Heat of vaporization (or pyrolysis)
of Ko, (in joules/kg).

R DATA Gas constant

SIGMA = o DATA Stefan-Boltzmann radiation con-

BLOCK stant (5.67 x 10~8 w/m2 deg4).

T = ZKFZZ DATA Preselected temperature of flaming
gases (1260 K).

TELZD(KR) = ELD CNVL Rate of increase of energy of
the hot layer by convection in
room KR (in watts) -- generally
negative,

TELZR(KR) = é RDNL Rate of change of energy of the
hot layer in room KR, by radiation
(watts) .

TELZZ(KR) = iL LAYR Net rate of change of the energy
of the hot layer in room KR (in
watts).

> GFIR {Negative of) chemical energy output
TE0ZZ (KO) = Ef FIRE gg%g rate (in watts) of objeet XC, when
. it is burning.

TEPZR(KO) = EPR RDNP Radiative power loss from flame
above (burning) object KO (in watts).

TEPZZ (KO) = ép PLUM Energy flow out the top of
plume KO (in watts).

TEUZZ(KV) = ﬁu VENT Energy convected out the upper
part of vent KV (in watts).

TMDZZ(KV) =1 VENT Mass outflow in the lower part of

v vent KV. (A negative value means
outflow.) In kg/sec.

TMFGZ(KO) = INPUT Gas flow rate, when object KO is

g a gas burner (in kg/sec).

TMLZZ(KR) = ﬁL LAYR Rate of increase of mass of the

hot layer in room KR. In kg/sec.



FORTRAN
Symbol (cont'd)

TMOZZ (KO) = ﬁf
TMPLU(KO) = ﬁé
TMPZZ(KO) = ﬁp

TMRZZ(KR) = t

TMUZZ (KV) T

PSI(KO) = ¢

TPSI(KO) = tan

VMAZZ = N
VMLZZ(KR) = Py
VMOZZ (KO) = Py
VMWZZ (KW) = Py
XLAMDA = A

XGAMMA (KO) = vy

XGAMAS (KO) = Yg

ZBVZZ(KV) = B

ZCAZZ = ¢
P
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Found
in

GFIR

- FIRE { PFIR

BFIR

PLUM

PLUM

VENT

FIRE

GFIR
FIRE { PFIR
BFIR

DATA

BLOCK

LAYR

INPUT

INPUT

DATA

INPUT

INPUT

INPUT

DATA

Description

Rate of change of mass of object
KO (kg/sec) -- generally negative,
of course.

Rate of entrainment of layer gases
by the upper part of plume KO
(kg/sec) -- i.e., the part in the
hot layer. In CFC V, @' is taken
to be zero. €

Mass flow out the top of the plume
over object KO (into layer) -- in
kg/sec.

Net mass (out-)flow rate from room KR.

Mass flow out the upper part
of vent KV (kg/sec).

Semiapex angle of cone modeling
the flame over burning object KO
(in degrees).
Tangent of ¥; actually, ¥
is not carried as a variable --
only TPSI.

Density of agbient air (1.177
kg/m3 at 300 K).

Density of hot layer in room KR
(in kg/m3).

Density of object KO (in kg/m3) .
Density of wall KW (in kg/m3).
Radiation mean free path (in m).
Air/fuel mass ratio during open-
air burning; calculated to be

14.45 for P.U. foam.

Stiochiometric air/fuel mass ratio.
Calculated to be 9.85 for P.U. foam.

Width of vent KV (in meters).

Specific heat of ambient air
(1004 j/kg deg).
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FORTRAN Found
Symbol (cont'd) in Description
ZCFZZ(K0) = cg INPUT Specific heat of pyrolysis gases

from object KO, when it's burning
(in joules/kg deg C).

ZC0ZZ(K0) = cy INPUT Specific heat of object KO (j/kg deg).

ZCWZZ(KW) = cy INPUT Specific heat of wall KW (in j/kg deg).

ZELZZ(KR) = EL LAYR Energy of the hot layer in room
KR (in joules).

ZGOZZ(KO) = « DATA Thermal diffusivity of object
KO (in m2/sec).

ZGWZZ(KW) = ay DATA Thermal diffusivity of wall
KW (m2/sec).

ZHBZZ(KV) = h INPUT Height of vent sill above floor
(in meters).

ZHLZZ(KR) = hL LAYR Depth of the hot layer in room
KR (in m).

ZHOZZ(KO) = h ,h INPUT Height of surface of object KO

o’ f

above floor (in meters).

ZHPZZ(KO) = h PLUM Height of plume KO (between hot

P surface and layer interface;

in meters).

ZHRZZ(KR) = hR INPUT Height of room KR (in m).

ZHTZZ(KV) = ht INPUT Distance of top of vent KV
below ceiling -- i.e. transom
height (in m).

ZHVZZ(KV) = hv INPUT Height of vent KV (m).

ZJ0ZZ(KO) = k INPUT Thermal conductivity of object
KO (w/m deg K).

ZIWZZ(KW) = kw INPUT Thermal conductivity of wall
KW (w/m deg K).

ZKAZZ = T DATA Temperature of ambient air (in

a degr%es Kelvin; default value is

300 K).

ZKFZZ =T see T

ZKLZZ(KR) = TL LAYR Temperature of the hot layer in

room KR (OK)



FORTRAN
Symbol (cont'd)

ZKOZZ(KO) = Ts
ZKOIG(KO) = T
ZKOPY(KO) = Tp
ZKWZZ (KW,JSIDE)

ZLAMDA(KO) = A

"
(ol

ZLRZX(KR)

ZLRZY (KR)

[ ]
=

ZMLZZ(KR) = .

ZMOZO(KO) = o

ZMOZZ(KO) = m

ZNOZZ(KO) = o
ZINWZZ(KW) = T
ZOAZN = h

e
ZOAZZ = h

ZOLZZ(KR) = h1

ZOLZM = a

ig

-167-

Found
in

Description

TMPO

INPUT

INPUT

TMPW

DATA
BLOCK

INPUT

INPUT

LAYR

INPUT

FIRE

INPUT

INPUT

DATA

DATA

CNVW

DATA

Temperature of the surface of
object KO (TK).

Tempgrature of ignition of object
KO (7K).

Temperature at whichoobject KO
begins to pyrolyze ( K).

Temperagure of side JSIDE of wall
KW (in K).

Radiation mean free path of photons
in flame gases (i.e., absorption
length -~ in m). This is just

the reciprocal of x = ZUFZ7Z.

Dimension of room KR in x-direction
(in m).

Dimension of room KR in y-direction
(in m).

Mass of hot layer in room KR (in kg).

Original mass of pyrolyazble part
of material in object KO (kg).

Mass of object KO as a function
of time (kg) -- i.e., the remain-
ing mass.

Thickness of object KO (meters)
Thickness of wall KW (m)

Minimum heat transfer coefficient of
(quiescent, ambient) air (taken to
be 5 w/m?2 deg K).

Heat transfer coefficient of
non-quiescent air. We take it
to be 10 w/m2 deg C.

Heat transfer coefficient of hot
layer gases (to ceiling/walls) in
room KR (in w/m2 K).

Maximum heat transfer coeff%;ient
of hot layer gases (in yﬂgz c).
We take it to be 50 w/mz K).
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FORTRAN Found

Symbol (cont'd) in Description

ZOLZN DATA Minimum heat transfer coefficient
of hot layer gases -- we take it
to be ghe same as ZOAZN -- {.e.,

5 w/m2°K.

ZPAZZ = pa =0 Ambient air pressure, taken as
reference pressure (in meters
of air; 1 atm. = 8780m).

ZPRZZ(KR) = Pe VENT Pressure at center of floor of
room KR, referred to p (in meters
of air equivalent).

ZRFZI(KO) = Ri INPUT Radius of object KO, in meters
(see description of R in sub-
routine RNPO). °

ZRFZM(KO) = Rm INPUT Augmented radius of object KO --
i.e., maximum equivalent possible
radius of fire, in m (see dis-
cussion under GFIR).

ZRFZO(KO) = R° INPUT Initial radius of fire on object
KO, in m (default value is .037 m).

ZRFZZ(KO) = R FIRE Radius of fire on object KO (in m).

ZTIG(KO) = tig FIRE Time of ignition of object KO (in sec).

ZTPYR(KO) =t FIRE Time of start of pyrolysis of

y object KO (in sec).

2TZ22Z = t MAIN Time from ignition (in sec).

ZUFZZ = Ke DATA Absorption coefficient of flame
gases (default value is 1.55 m™1;
L. Orloff).

ZULZZ(KR) = ABSRB Absorption Sgefficient of hot
layer (inm 7)

ZX0ZZ(K0O) = x DATA X coordinate of object KO, with

° respect to the local coordinate
system of the room it is in
(in meters).

ZYLDZ(KR) = YCOZ LAYR Mass concentration of CO2 in
hot layer in room KR (in“gm/gm).

ZYLMZ(KR) = YCO LAYR Concentration of CO in hot layer

in room KR (in kg/kg).
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FORTRAN Found

Symbol (cont'd) in Description

ZYLOZ(KR) = Y0 LAYR Oxygen mass concentration in
layer in room KR.

ZYLSZ(KR) = YS LAYR Concentration (by mass) of smoke
(particulates, mainly C, and con-
densed hydrocarbons) in the hot
layer in room KR.

Y =

ZYLWZ (KR) YH20 LAYR Mass fraction of H,O in the hot

2
layer in room KR.
ZYOZZ(KO) = yo DATA Y coordinate of object KO (in

room KR), in meters.

Appendix B.2 -- Subscripts.

Present

Subseript Purpose Range
J, or JSIDE Identifies the side of the wall under

consideration:

1. inside room

2. outside of room (open air).
KO Identifies the object 5
KR Identifies the room (KR = 1 only)
KV Identifies the vent 5
KW Identifies the wall/ceiling (as

with the room, there is only one
in Mark5, though it has been
DIMENSIONED to 5)



Appendix B.3 ~-

-170-

Some flags and other variables.

Most of the indices appearing in the program are carried in one

or another of the commons, and hence can be found on PP. 71-79. Those

which are not in common appear here:

Symbol

HALVE

HH

ICOUNT

ICONV

ICTRL

MET1

NCONV

Remarks

Logical variable in subroutine NUMER. When .TRUE.,
time interval At must be cut in two.

Fractional increment of variable whose influence co-
efficient is being calculated. At present HH = 0.001
of scaled variables.

Two meanings: first, it gives the number of state
changes which occurred in a given timestep. In sub-
routine SETJ, on the other hand, it is the number of
the variable in JBLK (hence, varies from 1 to NVAR
See pp. 69-70.)

Flag to show convergence
0 ==> not converged.
1 ==> converged (to accuracy TOLER).

Index used in MAPS, to indicate whether a mapping
packs a large, sparse array into a smaller, dense
one, or vice-versa. (See fig. 19, p.6).

0 ==> pack

1 ==> unpack
Dummy index used only in SETI. It is the position of
a variable in ICOR. (See fig. 23, p. 70.)

Index which indicates that a switch in numerical
method is called for

0 ==> Switch to JACB

1 ==> Switch to NWSF

2 ==> Swyitch to NWIN

Index in subroutine CONV, indicating status of cal-
culation (see p. 68):
1 ==> converged
0 ==> not yet converged; insufficient information
available from fnorms to decide whether or
net it will converge.
-1 ==> diverging; halve the time increment (or change
numerical method).
-2 ==> diverging, and it is probably useless to halve
At.
m(m>1) ==> converging, and m is the expected number
of iterations still needed.
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Remarks

REMAP

TOLER

Logical variable in NUMER. When .TRUE., ICOR
must be reset.

Convergence criterion for scaled variables. At
present sc=TOLER=3 x 10-4.

Appendix B.4: Subroutines other than for physics.

See
Subroutine Page

ALTINP
CALS
63, 80
CALS1
80
CONV

Description

Called by INIT. In file I. Reassigrs user I/0_
logical units to something other than the terminal --
used for batch mode. Questions which normally go to
the TTY are now dumped into a default ''garbage"

file FOR@@PP.DAT. However, not everything which
goes to the TTY in interactive mode is written into
this garbage file; to save I/0O overhead, some WRITES
are ignored if the IBATCH flag is set (see INPUT3,
DISP, VERIFY, and WRIT). In addition, to reduce the
size of a batch deck of cards, the "verify" question
from INPUT3 and VERIFY is suppressed. Input to
ALTINP should be the logical unit number for the

new input device, or a number N for a default
FORTRAN file for input, known as FOR@@N.DAT, with

N #0.

(""Call Subs"). Called by MAIN, EXTRAP, JACB. In
file S. Calls the physical subroutines in succession
to compute physical variables. XK is the input
vector and XK1 is the output vector. (Dummy sub-
routines TMPF, FHET, and PLHT have been inserted

to assure that certain variables are not set equal
to zero.) CALS (and before that, CLSB) was changed
so as to implement the Gauss-Seidel method, in

place of the Jacobi form of the successive sub-
stitution method. It now also allows for a variable
subroutine-calling order via the array IORDER.

Called by NWIN. ‘In file S. This subroutine differs
from CALS in that it leaves /VAR/ undisturbed. The
new values are placed into the common block /NEWVAR/
as they are returned from the physical subroutines.
This subroutine is used by NWIN to compute the
Jacobian matrix.

Called by JACB, NWIN. In file N. This subroutine
examines XK and XK1, and decides whether the array
XK has converged. (Only considers variables in
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DISP
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52, 56
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the system -- i,e., in ICOR.) The result
is given via index NCONV (which see).

Called by INPUT3. 1In file I. Copies the input
data from another section, when desired (e.g.
the physical properties of object #3 might

be identical to those of #2, but it is placed
in another spot in the room). This simplifies
data input.

Called by MAIN, TIGC, CALS. In file W. This
routine contains an initialization section
(entered when IFLAG=1l) and a section that
gives help to a user in trouble. To invoke the
help section simply set IHELP, a variable in
COMMON /DBUG/, to 1. This will force a call
to DEBUG at the first possible moment, usually
at the end of the current iteration.

Called by MSLV. 1In file N. Decomposes any
matrix -- in particular, the Jacobian -- into
a product of a lower-diagonal matrix L with
unit diagonal entries and an upper-diagonal
matrix U, The output matrices L and U are
both stored in UL.

Called by MAIN. In file M. Calculates

At for next step. It does this by referring
to the flags IIGNT, IOUTP, TCONV, DTOLD,

and DTINIT (see common /CONTRL/).

Called by INPUT3. 1In file I. Displays input
values as they are fed in, in blocks. Changes
or corrections are easy to implement here.

Called by MAIN. 1In file M. Extrapolates XK,
so as to come up with an initial guess at the
converged values of the physical variables at
a new timestep. Quadratic extrapolation is
used whenever possible (when in Gauss-Seidel),
linear extrapolation otherwise. Linear extra-
polation is also used when in NWTN.

(see MAIN)

Called by MAIN. In file I. Initializes
variables for use in CFC (except for system
variables initialized locally in subroutines).
Part of input package. Calls INPUT3 to get
data from the terminal.
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Description

Called by INIT. 1In file I. Reads input data from
the terminal.

Called by NUMER. In file N. Implements the suc-
cessive substitution method to solve the system of
equations at a fixed timestep. Flag ICONV is set to
1 on exit if a converged solution has been ob-
tained, to 0 if no solution has been obtained. If
no solution has been attained, the time increment is
halved. When there is no convergence at DT=,125
seconds, it switches over to the Newton method.

Called by SETI. In file W. This subroutine prints
an alphanumeric list of variables in the system 1if
the user has chosen that debugging option.
If ICTR = 1, print a list of all variables in the
system;
If ICTR = 2, print a list of all variables entering
or leaving the system.

Called by LIST, NWSF, NWIN, MSLV, WRIT@3. In file W.
This subroutine finds the name of the variable which
is at (any) prescribed position of a variable array.
It returns the stem of a variable name and its
suffixes.

Index is a position in the common block /VAR/.
A sample calling sequence is
Call LOOKUP(JBLK(IMAX),ISTEM,ISUFF1l,ISUFF2)

ISTEM should be dimensioned (5).

To write the variable name out:
WRITE (IWTTY,200) (ISTEM(I), I=1,5),ISUFFl,ISUFF2
200 FORMAT (1Xx,5A1,'(',I1,',',I1,")")

Currently, this subroutine is dimensioned so as to
handle up to 20 room, object, or vent variables,
and up to 10 wall variables.

OFFSET contains the locations in /VAR/ preceding
the first room, object, vent, and wall variable.

In file M. The control program of the Computer
Fire Code.

Called by MAIN, DEBUG, WRIT, CALS, NWSTAT. In file
S. This subroutine maps between the set of variables
which actually exist in this run of the program and
between the largest possible set of variables,
via JCOR.

ICTRL = O maps from XBIG to X.

ICTRL = 1 maps from X to XBIG.
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Description

Called by NWIN. 1In file N. Directs solution of

the linearized system of equations (23) by calling
DECOMP and SOLVE. That is, it calls the Forsythe-
Moler package to solve the rank-N linear system
XJCB*X=B. Matrix XJCB is not in the calling sequence
but in common block /NUMERC/.

Parameter IDCMP controls the L-U decomposition of
matrix XJCB into UL as follows:
IDCMP=0: no new decomposition.
IDCMP=1: call to "MODJ" to update decomposition
for one new column(was removed on 6/12/80.)
IDCMP=2: call "DECOMP" for complete new decomposition.

Called by MAIN. 1In file M. Controls calling of
numerical methods; decides whether or not to halve
At, and whether or not to reset ICOR.

Called by MAIN. In file D. Notes whether any
objects have changed state, and calculates when
this happened.

Called by NUMER. In file N. These implement a
multivariate form of Newton's method to solve the
system of equations at a fixed timestep.
ICTRL = 1: Super Fast Newton Method (NWSF)
ICTRL = 2: Slow Newton Method (NWTN)

In NWIN, the entire Jacobian is updated at every
iteration. This subroutine attempts to ensure con-
vergence at the expense of efficiency. The increment
HH formerly used in calculating the Jacobian has
been replaced by 0.001 x the value of the variable
itself. In NWSF, the Jacobian is kept constant.

Called by INIT. In file I. Outputs a recapitulation
of the input data, when that is all in and corrected;
it is printed and displayed on the terminal as well.

Called by MAIN. In file M. Determines whether the
program should recompute the set of variables in
the system at this timestep. ICOR is recomputed if
a variable becomes bigger than VMIN, if NSCAL
seconds have passed since the last recomputation,
and on the first 10 timesteps of the program.

Called by INIT. In file I. Allows user to select
which version of some physics subroutines he wishes
to use. Limited to TMPO and ABSRB, in Mark5.
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Called by MAIN. In file S. This subroutine sets
up ICOR, which maps from the set of variables in
the system (i.e. to be used in Jacobian matrix and
to be checked for convergence) to the set of all
defined variables. It determines which variables
are to be in the system.

ICOR is now part of JBLK, lying in it above JCOR.

IPTR(2,1) points to the bottom of ICOR.

IPTR(2,2) points to the top if ICOR.

INSYS and INSYSP is an alternate method of keeping
track of which variables are in the system, now and.
at the previous call of SETI. INSYS and INSYSP
correspond in size to JCOR, and equal 1 for variables
in the system, 0 for variables not in the system .

Called by INIT. In file S. Generalized JCOR-initial-
izing routine. Common /CCOR/, where JCOR and ICOR
were located, has been expanded to one monolithic
block of a DIM(600) array. JCOR and ICOR would

be allocated within the block; JCOR at initialization
time, ICOR continuously (at every rescaling its

size may change).

The array IPTR contains all the information about
the boundaries of JCOR and ICOR:

IPTR(1,1) = lower bound of JCOR;
IPTR(1,2) = upper bound of JCOR;
IPTR(2,1) = lower bound of ICOR;
IPTR(2,2) = upper bound of ICOR;

The array INVAR gives the number of variables assoc-
iated with each component of the building: INVAR(1) -
with a room, INVAR(2) - with an object, INVAR(3) -
with a vent, INVAR(4) - with a wall.

Called by DECOMP. In file N. Prints diagnostic
messages relating to the solution of the system of
linear equations. In particular, when the Jacobian
is singular.

Called by MSLV. In file N. Solves eq. (23) by
Gaussian elimination. That is, it solves the
matrix equation A*X=B for vector X, where A is the
product of the lower- and upper-diagonal factors
stored in matrix UL.

Called by INPUT3, INIT. In file I. Asks the user
whether he wishes to change (correct) the last
entry he's made. If so, the last question is
reasked, and a changed input can be made.
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Descrigtion

Called by MAIN, DEBUG, NWIN, JACB. In file W.
Writes the input vector X onto device IDEVIC (tele-
type or disk). The pointer information in common
block /POINTR/ determines which elements of the
arrays in X are to be output.

Called by WRIT, INIT. In file W. Provides the
short-form output: Outputs 9 columns of information
at user-chosen time intervals: time and 8 variables

~which the user chooses at the time of initialization

(when called by INIT), or the default set.

Note: intended for output with 120 or more columns
only.
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Appendix C. Sample Output.

On this page we display the standard ("long form') output of the

program, for one time step.

On the following three pages, we dis-

play the entire output for a standard run (S.R.), using the '"short

form" output, instead.

of the input (not shown on this page, of course).

In both cases, we first get a recapitulation
The files used

for run M240 (p. 178ff) antedate MARK 5 a little bit, and also in-
clude some utility programs (RTIME, TIMER) which are unique to our

facility, and which serve to give us the CPU time, the date, etc.

For the output, we chose to display ZULZZ (x) rather than the 'default"

variable, ZKWZZ (Tw) to demonstrate that that can be done; the rest

of the variables are the 'default" set -- i.e., the set obtained

when the variables are not explicitly specified.

T277= 2,293RE+95
1 TAIMAIS 1 ,DUNYE NS
2CI773 4,7584E+9?P
YW, NLI0NNE N0
1¢4772=2 3,7h45E+N2

VENT= 1
NALLE Y,

NALLS: 1,22

TVJZZ= 4,3409E=01
FaP43z 9,1181E+02

FI1PA=z, D,0000FE+00

TMDZZ=-4,2269E~
FALADs 2,5463E+

FILAD==3,22%1E¢

LEYX LR EREA R N NN RN N W N N R N NN R R N NN NN N RN RN R A L I R I A R N

Tz, 487,172
R10Ms: 1

Jr= 2,700
TSLL=2~8 ,RA94E+13
Ny ¢7=m4,3935C=04
74077 1,9543FE+00
27078 4,1913F=92
TY_N72 | ,4804E=72
s SAILNRE 5,1R1%E+02
) 7¢)77=2. 7,2700E+07
TENZ7cm2,1681E+405
749772, 4,5909E=N1
TEe 7= 5.,8060E+N04
7€ {72 3,51350E=21
FILOARE, 7,5165EF+0°2
7¢277=. 3,9044dF+02
TENZ72 0,1000E+D0
T2Hz7e 2,297RE+NS
1 TILWRE 1 ,0441E+D3
LAN77= 4, 7hU81E+02
TILWII=, D L,ANNDNESON
7T<WZ72, %3,06490F+02

NALLE. 1,2

\NT=s 23«
TEL7D=~5,4011E+04
LEL? /= $,3335E+06
74L778 3,2717E+02
ZyLvZ= $,9057€=04
IPR/[1=m=1,2UU48E=02
FIN'IR=, 1,132dE+03
ZvM0Z27= 3,5036E+01

TUP72= H,3353E=01

1,5547E+03
1,0963E400

FINIR =,
7M027 =

TVJ72=.
FA243s,

4,3413%E=01
93,1185E+02

FIPAMI=, D,0000E+0D

NVITe 1504

Ti=. S 3
IML77= 6,2982E+
TELZ7=2=1,0823E+
ZYLDZ= 1 .,68U3E-
ZyLS7= B,8193€~

FIPIR= 4,9002E+
T40Z222=-1,0927€~

TEPZZ= 2,9245E+

FIPNR=2 1,6368E+
Tv0Z72= 0,0000E+

TUNZ7Z22=4,227UE-
FILND=2 2,5382€+

FALAN==3,44BAE ¢

Ly ey e ey ¥ R Y R FRRTREY Y Y XYY Y RN XY X IR N TR R LA R LR T LA N KL A A Rk
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RyYyN M _240

>\ A&l

3.R.’ 7

FILES IV USER:

GeVAR g

17356250

M10100,T13130,N10100,410100,510105,219100,C10100, F10120,N10100, 10100,

P12100,T13100,V02021,RTIME, TIMER
PHYSICAL! SURRNUTTINES IN USE (ONLY FOR
THAN ONE VERSION AVAILASLEY L
TMPY, VEISTINI 2
43333, VvERSION 2

SZ0METRIC

RODW NyUMBER! L t:

LENSTH ALONG Xz 2,4384
LENSTH ALONG Y= 3,6576
HEISHT=:  2,4334

AMITINTI TEMPERAT JRE= 300,09
23JEIT NIMIER 1 (IJ= 1)
(=2JIR)J)= H,R400

ANSLE HTTH: 4IORTZINTALE. 0,00
THTIZCNZIBSS 0,1900

39£2TS1INI 42aT1= 1300,
SMIS3TVITVE= 0.98

HEAT' 0F CNMIYSTTIN= 2, 87N0E+07

PYROLTZATIAN TEM2= 600,0
ATI/FUZLI MAS85 ATIO= 14,45
TNTTTA LI MASSS: §,9520
MAXIM M RADT JS=i I,9677
F2N2(27R° WASS/FYEL MASS)=1,504
F%(S*’KF'ﬂASS/FUFL MASS)=0,241
AUFIRE 523240 SAAMETEI=0,011)
OB JECT' NUY3ER 2 (I0= 2)
X=0JIR)I=: 2,0800

ANGLE' WITH HIRIZOINTALEs. 0,00
THIZKNZIRS= 0,1000

SPECISICI HIAT= 1300,
EMTSSIVITV= 0,94

HEAT' 0% COM3IUSTTON=. 2,870E+07
PYI0LQZATION TEMP= 600,0
ATI/FUILI MASS RATTI= 14,45

INITTA (MaSS= 1,0963
MAXTM M ADTUS=: 0,4657
FCO2(ZNP M!SS/FUEL MASS)=1,504
FS(SYIKE' MASS/FUEL MASS)=0,241
A(FIRS: SPREAD 3AQAWETE?) =0,0119
VENT! NUMBER! 13
, WIDTH= 0,75620
WALLI NUMBER! 1 8-
THTYCKNIRSE 0,0254
3P=f1=1'lHEAr~ 1062,
PHYSTCALI =INSTANTS S
_ SPECTFICI HEAT' OF AlIR=:
FOR: AIR?
HEAT' TRANSFER COEFF= 10,00

FI LAYER' 3ASES?
. WAX 4EATI TRANSFER! COEFF= 50,00
FIR VENTST:

FLON COEFFE 0,48

HEIGHT=. 2,0320

100a,

348TC) TTVEI INCREMENT®. 2,00 SECONDS

Y=COJRD= 2,8180

Y=COJRY= 2,8180

THOSZI SJBROITINES AITH uQRE

AND PHYSTCAL' PARAMETERSS:

ANSLE WITH VERTICAL Xe3_ANZE:
THZIVMAL CONDUCTIVITY= 0,0540
DEMNSITY= 48,09

CHI(F?ACNIOM JF HEAT IELEASEDYS: 0,65
HZIATI OF VAPOIRIZATION= 2,054E+ns
IGNITION TEWP=, 727,0
STOACHIOMETRIC MASS RATIO=.
TNITTAL RA0TUS=S 0,0370
O3JECT' 4D1IUS=. 0,9598
FCO(CI VMASS/FUEL MASS)=D,013
FH20.(H20' MASS/FUEL: MASS)=u,718

0.00

9.85

HETGHT=. n, 3640
ANGLT WITH VE?YICAL X=3 ANZ=
THEIMAL CONDUCTIVITY= 90,0540
DENSITY=: 43,00
CHT(FAZTTION IF HEAT ELEASED)= 0,65
HEAT DF VAPIRIZATINY= 2,0S54E¢0%
IGNTTTIOV TEUP= 74),0
STIZHIOMETRTIC MASS ATIO=,
INITTAL RADIUSE 00,0370
0BJZZT' RAD1 5= 0,3439
FCO(CO MASS/FUEL MASS5)=0,013
FH20'(H20 MASS/FUELI MASS)=0,714

0,00

9.85

TRANSOM JE2TH= 00,4064

THZIVAL CONDUCTIVITY= 0,1340
DEN3ITY= 800,0

RAD MEAM PATH IN FLAME=: 0,55

PLUME: ENTRAINMENT COEF%=, 0,10

MIN' AZAT! TRANSFER COEFFs, 5,00
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